
Counting events reliably
with storm & riak

Frank Schröder - eBay Classifieds Group
Amsterdam

marktplaats.nl
!

Classifieds

Admarkt
!

Pay-per-click ads for
professional sellers

Seller places ad,  
chooses a budget
and cost per click

We show the ad
if it is relevant and
budget is available

We show the ad
if it is relevant and
budget is available

Count
clicks & impressions

 
Update

budget & ranking

We chose
Storm & riak for

ranking calculation

Constraints

135M events/day
@ 3.2K/sec peak

accurate

real-time

scale horizontally

handle events out-of-order

accurate

real-time

scale horizontally

handle events out-of-order

Storm

Real-time computation framework from
Twitter

Stream based producer-consumer
topologies

Nice properties for concurrent  
processing

Storm
You write:

a) code that handles a single event  
in a single threaded context

b) configuration how the events are
produced and flow through the topology

Then Storm sets up the queues and
manages the Java VMs which run your code

Storm
Spouts emit tuples (Producer)

Bolts consume tuples and can emit them,
too (Consumer & Producer)

Storm worker = Java VM,  
Each spout & bolt = 1 thread in a worker

Concurrency is configurable 
and independent of your code

Storm
simple topology

boltbolt

spout

AMQ

event source

riak

Storm
Topology

riak

Storm
complex topology

bolt boltbolt bolt

spout spout spout

AMQ AMQ AMQ

event source

LB

riakriak riakriak riak

Storm
Topology

Storm
our topology

marktplaats.nl spoutAMQ

avg 1
read

avg 2
read

event
handler

avg 1
update

avg 2
update

store
store

riak

Storm
our topology

marktplaats.nl spoutAMQ

avg 1
read

avg 2
read

event
handler

avg 1
update

avg 2
update

store
store

riak

7 riak nodes

3 spouts on 3 servers

24 avg1 bolts

24 avg2 bolts

96 event handler bolts

Storm
Hardware Setup

storm001 storm002 storm003

storm
nimbus

storm
ui

storm
worker

storm
worker

storm
worker

stormzoo003stormzoo002stormzoo001

zoo
keeper

stormriak001 stormriak002 stormriak003 stormriak004 stormriak005

ActiveMQ

zoo
keeper

ActiveMQ

zoo
keeper

ActiveMQ

stormriak006 stormriak007

Admarkt
click-counter

1. Service writes JSON event to file and sends it to
ActiveMQ. Use same format for logs and Storm.

2. Spouts read JSON events from ActiveMQ and
emit them into the topology

3. Bolts process events and update state in riak

If something goes wrong we replay events by
putting the logs on the queue again

riak for persistence

How fast can we
write?

Riak Write Performance
riak 1.2.1, 5 node cluster

op
s

pe
r s

ec
on

d

0

5000

10000

15000

20000

25000

Document size in bytes

256 1024 4096 8192 16384

1 read + 1 write/sec peak

Conclusion:
Document size is

important

How can we be
accurate?

!

How can we be
accurate?

!

Handle each event exactly once

But events can arrive 
out-of-order…

!

But events can arrive 
out-of-order…

How can we know
whether we have

seen an event
before?

Idea 1:
Comparing timestamps

event timestamp < last timestamp:  
we have seen it already

Milliseconds are not accurate enough

NTP clock skew

Replaying and bootstrapping does not work
since you can’t tell an old from a replayed
event

Idea 2:
Sequential Counters

event id < last id: we have seen it already

How do you build a distributed, reliable,
sorted counter? How do you handle
service restarts? How can this not be the
SPOF of the service? No idea ...

Replaying and bootstrapping does not
work for the same reasons as before

Idea 3:
Keep track of hashes

Event hash in current document:  
we have seen it already

Bootstrapping and replaying just works

Over-counting cannot happen

On failure just replay the logs

but ...

How many hashes do
we have?

Keeping track of events

135M events per day -> 135M hashes

650K live ads -> 210 events per day/ad

But a handful of outliers get  
40.000 events / hour - each

sha1: 40 chars, md5: 32 chars, crc32: 8 chars

Collisions?

Hash sizes
Remember that document size is important

sha1: 210*40 = 8.4KB

md5: 210*32 = 6.7KB

crc32: 210*8 = 1.7KB

Keeping documents small

Usually events are played forward in
chronological order

Only during replay and failure we
need older hashes

Keeping documents small

Keep only the current hour in the main document
(hot set)

Hash must be unique per ad per hour  
-> Should take care of collisions. Should ...

At hh:00 move the older hashes into a separate
document

Keep documents with older hashes for as long we
want to be able to replay (1-2 weeks)

But with riak we don’t
have TX …

Moving hashes from one
doc to another without TX

1. Write archive doc with older
hashes but keep them in the main
document

2. Remove older events from the
current document and then write it

Replaying events without
TX

1. Load older hashes from riak and
merge them with main document

2. Write archive doc with older hashes
but keep them in the main document

3. Remove older events from the
current document and then write it

Serialization
Document size is important ->  
Serialization makes a difference

Kryo isn’t as fast as you might think

JSON isn’t as bad as you might think

Custom beats everything by a wide margin

Maintainability is important, too

Serialization

Maintainability is important, too

You can look at JSON (helpful)

Schema evolution via  
Content-Type headers

Persistence
Average ad has average number of hashes

Can be written in real-time

Outliers have orders of magnitude more
hashes

More hashes -> bigger docs & more writes
-> kills riak (even a handful of them)

Persistence
Simple back pressure rule (deferred
writes) saves us

Small doc -> write immediately

Larger doc -> wait up to 5 sec

Volatile docs receive lots of events during
defer period. Saves writes

8 months in
!

Lessons learned

Riak
Cleaning up riak is hard since you can’t
shouldn’t list buckets or keys. Easier with 2.0

Can’t query riak for “how many docs have
value x > 5” without a program. Easier with
2.0

MapRed with gzipped JSON requires Erlang
code. JS can’t handle it. Not in 2.0

Riak

Deferred writes only help so much.
Maybe use constant write rate to
make system more predictable.

Riak scales nicely with more nodes.

Storm
Mostly stable and fast (v0.8.2)

Must understand internal queues
and their sizing. Otherwise, topology
just stops

Need external tools for verifying that
topology is working correctly

Hashes
Nice idea but creates unbounded
number of documents. Disks fill up
and cleaning up is hard.

Replay logic kills performance.

Replaying is too slow if we need to
replay a full day or more.

rethink

We don’t want to know
what we have seen

!

We want to know what
we have not seen

This would solve some
problems:

!

doc size constant
number of docs constant

riak cleanup not necessary

But how do we know
what we haven’t seen
if we don’t know what

is coming?

Idea 2:
Sequential Counters

event id < last id: we have seen it already

How do you build a distributed, reliable,
sorted counter? How do you handle
service restarts? How can this not be the
SPOF of the service? No idea ...

Replaying and bootstrapping does not
work for the same reasons as before

Idea 2:
Sequential Counters

event id < last id: we have seen it already

How do you build a distributed, reliable,
sequential counter? How do you handle
service restarts? How can this not be the
SPOF of the service? No idea ...

Replaying and bootstrapping does not
work for the same reasons as before

Why just one
counter?

Lets have multiple
!

!

Lets have multiple
e.g.

one per service
instance

eventId =
counterId + counterValue

!

e.g.
!

hostA-20131030_152543:15

Create unique counter id at
service start and  

start counting from 0
!

Increment atomically
(AtomicLong) and send

counter id + value to storm

Storm keeps track of
counter value 
per counter id  

 
Keep gap lists of missed

events

Now we can predict
what is coming

Questions?

Thank you
!

frschroeder@ebay.com

