
Big memory – Scale-in vs. Scale-out

Niklas Björkman
VP Technology, Starcounter

Magic?

“Any sufficiently advanced technology
is indistinguishable from magic.”
Arthur C. Clarke

Today’s topics

History

Database landscape

Scale-In instead of Scale-out

Performance on all levels

History
Where did it start?

(Don’t worry, it’s just 2 slides)

SQL is born

SEQUEL by Dr. Codd in 1970

IBM and Oracle (Relational System) early adopters

First relational database released in 1980

Optimizations in traditional database to optimize for disk access

Extreme memory costs – need to store on disk

Dr Codd invented the relational data model around 1970.
”A Relational Model of Data for Large Shared Data Banks”,
Communications of the ACM 13 (6):377-387, 1970

RAM v’s history

1960 1970 1980 1990 2000 2010

0.005

3 000 000

6 000 000

1 MB of RAM was $750,000 in 1970 compared to 0.5 cents today

Today
Where are we today?

Landscape

Matt Aslett – 451 group

Alternatives today

Use the RAM

Scale-In instead of out

All data in one set of RAM

Hardware limit at 2 TB (soon > 10 TB?) of data (64bit)

Compress data about 4 times

Transaction conflicts solved fast

Extreme performance

True ACID

√

Scale-In and ACID

Atomicity

”C” without suffix or prefix

Isolation level like traditional databases

All writes secured on disk upon committed

CAP theorem (no ACID in scaling out)

Who needs ACID?

 Dealing with business-critical data like retail, money transfers and
logistics in a multi user environment

Conflicts will occur and need to
be managed by

Database

Application (hard for developers)

End user:
"Sorry we have just sold you a
product we already sold to
someone else"

The extra mile

Let’s see what happens if we use the RAM even further

Usually DB objects and App objects in different set of RAM

Share heap between application and database

RAM

Object heap

Application

Application

DBMS

New opportunities

No need for separate schema

The end of ORMs

POCO objects are your database

SQL directly on your POCO

Query not only persistent fields

We can simplify the use for developers

Application programming

Set attribute [Database] on your CLR
class

Create object (INSERT)

Modify object (UPDATE)

Delete object (DELETE)

Query objects (SELECT)

Native new() operator

Native assignment operator (=)

Use method Delete()

Db.SQL(“SQL92”)

Database schema

(CREATE TABLE)

Traditional database Modern database

Database schema

[Database]
public class Employee
{
 public string Name;
 public DateTime? HireDate;
 public decimal Salary;
 public Department Department;
 public DateTime BirthDate;

 public int Age
 {

 get

 {
 return DateTime.Now.Year-BirthDate.Year;

 }
 }
}

Create object

[Database]

public class Employee
{
 public Employee() { }
}

Employee e = new Employee();

Modify object

Department d = new Department();
Employee e = new Employee();

e.Name = ”John”;
e.HireDate = null;
e.Salary = 20000;
e.Department = d;

Delete object

Department d = new Department();
Employee e = new Employee();
e.Name = ”John”;
e.HireDate = null;
e.Salary = 20000;
e.Department = d;

e.Delete();

Transactions

Transaction scopes
 Db.Transaction(()=>
 {

 Person p = new Person();

 p.Name = ”Albert”;
 }

Long lived transactions
 Transaction t = new Transaction();

 ...

 t.Commit(); // t. Rollback();

Parallel transactions

Performance - reading

If used wisely we can scale read transactions linearly over the number of
cores

Transactions per second

CPU cores
2 4 6 8 10 12

2,000,000

4,000,000

6,000,000

Performance - writing

Depending of the number of transactional conflicts, writes will level out
at a certain level (ACID). Still 100 times faster than traditional relational
databases.

Transactions per second

CPU cores

Non-ACID

ACID

100,000

200,000

300,000

1 2 3 4 5 6

Next steps
Is the future here already?

What’s next?

Extreme performance
Reliability (ACID)

Easy to use API:s
Today we have databases with

Logical next steps

Easy to use connectivity
Super fast communication servers

Easy to use in modern applications

Communication Performance

A normal setup for a web based application

Internet Client
Web

Server

Database

App-
lication

Maybe do a little
special fix?

Communication Performance

Tie the web server, application and database closer together

Internet Client
Database

Application

Web server

Limitation - Network/OS

Internet

Database

Application

Web server

Modern DB – 200,000 requests
per second on 1 GB network

Solution - Network/OS

2013-11-11

Internet

Database

Application

Web server

Proxy
Web

Server

Proxy
Web

Server

Proxy
Web

Server

> 3,000,000 requests per second

Development performance

Modern applications with web standards

 REST/JSON

 JSON Patch (RFC 6902)

 WebSockets

Modern Interactive applications using

 MVVM

 WebComponents

 AngularJs

Modern standards

Easy to use REST API

Register URI

Server

Database

Application

Client

HTML, Android,
WPF, iOs …

REST

JSON

Trends

The trend is that we move away from server side rendering

Data is fetched from server - on the fly or mirrored MVVM

Register URI

View Model

Server

Database

Application

Client

HTML, Android,
WPF, iOs …

View Model

Mirroring

JSON/Session

JSON models

Simple JSON model

 “FirstName$”:"Albert",
 “LastName$”:"Einstein",
 “Quotes”: [
 { Text:"This is an example" }
]

JSON model automatically bound to persistent data

 PersonModel model = new PersonModel();

 model.Data = new Person();

REST verbs

Handle REST verbs server side

Handle.GET("/new-person", () =>

{

 PersonModel c = new PersonModel();

 Person p = new Person();

 p.FirstName = ”Albert”;

 p.LastName = ”Einstein”;

 c.Data = p;

 return c;

});

REST with body

Complete model in body

Handle.POST("/new-person-wModel", (PersonModel model) =>

{

 Person comp = new Person();

 comp.FirstName = model.FirstName;

 comp.LastName = model.LastName;

});

Controller

Handle client modifications on the server

class PersonModel : Json {

 void Handle(Input.FirstName input) {
 if (input.Value == ”Albert”) {
 Message = ”Not accepted value”;
 input.Cancel();
 }
 }
}

Binding

Using declarative programming and binding allows automated updates

FirstName:"Albert",
LastName:"Einstein",
Quotes: [
 { Text:"This is an example" }
]

public class Person
{
 public String FirstName;
 public String LastName;
 public IEnumerable<Quote> Quotes
 {
 get
 {
 return Db.SQL<Quote>(
 “SELECT q FROM Quote WHERE q.Who=?”, this);
 }
 }
}

Binding – automatic updates

void Handle(Input.Text input) {
 new Quote(){
 Text = input.Value,
 Who = Data
 };
}

The ”Quotes” property will change in class Person

public IEnumerable<Quote> Quotes
{
 get
 {
 return Db.SQL<Quote>(
 “SELECT q FROM Quote WHERE q.Who=?”, this);
 }
}

Delta sent to client

View Model

Server

Database

Application

Client

HTML, Android,
WPF, iOs …

View Model

JSON
Patch

Json/Session

Example setup MVVM

Client

<label>

 {{item.FirstName$}}

</label>

{
 “FirstName$”:"Albert",
}

JSON patch

public class Person{
 public String FirstName;
}

 void Handle(Input.FirstName input) {
 if (input.Value == ”John”)
 {
 Message = ”Not accepted value”;
 input.Cancel();
 }
 }

Controller

DB

Server

Super fast, super easy

Super fast

Database core

Application

Communication server

Super easy

 Database API

 Client-Server API

 To maintain

 Less lines of code

As ABBA would say

Money, money, money

Save money on

Hardware
Shorter time to market

Maintenance
Fewer developers
Faster to learn

Shorter time to market
Less DBA costs

Summary

History

Database landscape

Scale-In instead of Scale-out

Performance on all levels

Easy to use

Magic

Thanks for listening!

