
Counting events reliably
with storm & riak
Frank Schröder - eBay Classifieds Group

Amsterdam

marktplaats.nl

Classifieds

Admarkt

Pay-per-Click ads for
professional sellers

Show ad if relevant
and budget available

budget =
budget - clicks*cpc;

if budget == 0
hide(ad);

func onClick(ad) {
 ad.relevancy++;
}

Manage & find ads

Keep track of budget

Analytics & Statistics

Count
clicks & impressions

70-100M/day
@ 2K/sec

accurate
(must not lose a click)

quick

detect fraud &
unwanted events

scalable

Additional
Requirements

System too slow => add more boxes

Must work across multiple data centers
and for multiple customers

Faster decisions & better analytics

A/B testing

Current system (2y old)

Current System

SOA architecture

Queue and aggregate events

Write log records into MySQL

Write log records to disk for archival

Aggregate
data even

more

click fraud
protection

in memory
queue

clicks &
impr

Aggregate
because

AMQ is too
slow

logs to
disk

queue

Aggregate
data even

more

ranking
service

budget
service

MySQL
180GB

MySQL
90GB

Bottleneck

To determine the performance of an
ad (clicks & impressions) we query
the database

SELECT SUM(clicks*cpc) WHERE id=123;

MySQL has to perform SUM and
GROUP BY queries on two large
tables (500M rows , 180GB data &
idx)

Current System

To keep up with the usage we have to
keep the database in RAM

The way we use the database is
the bottleneck

Potential Solutions

Better Hardware

Current DB servers already have
270GB RAM. Need 3 per data center

Already seeing random RAM errors

Probably not the end of the line but
close to what makes sense

Sharding

Finding a good shard key is difficult (hotspots)

Sharding should be handled by the app

Re-balancing is a pain (different hotspots)

Would need ~60 MySQL servers instead of 3
-> DBA would not be happy
-> Schema changes are a nightmare

Precompute

Precompute all required values

Fast, but less flexible (no ad-hoc queries)

Stop recomputing things we already know,
i.e. yesterdays data

Problems: Bootstrapping, over-/undercounts,
failures, replays, new requirements

Storm & Riak
Architecture

Storm

Real-time computation framework from
Twitter

Orchestrated by Zookeeper

Stream based producer-consumer topologies

Nice properties for concurrent
processing

Storm
Software Architecture

bolt boltbolt bolt

spout spout spout

AMQ AMQ AMQ

click fraud
protection

LB

riak

Storm
Spouts emit tuples (Producer)

Bolts consume tuples and can emit them, too
(Consumer & Producer)

Storm worker = Java VM,
Bolt = 1 thread in a worker

Concurrency of spouts and bolts is
configurable

Storm
Hardware Architecture

storm001 storm002 storm003

storm
nimbus

storm
ui

storm
worker

storm
worker

storm
worker

stormzoo003stormzoo002stormzoo001

zoo
keeper

stormriak001 stormriak002 stormriak003 stormriak004 stormriak005

ActiveMQ

zoo
keeper

ActiveMQ

zoo
keeper

ActiveMQ

Admarkt
click-counter

Input are log lines (same as archive)

Service sends log lines via LB to one of
the ActiveMQs

ActiveMQs don’t do HA, the app does

For replays just put the logs on the
queue

How fast can we
write to riak?

Riak Performance

0

5000

10000

15000

20000

25000

256b 1024b 4096b 8192b 16384b

1 read + 1 write/sec peak

Conclusion:
Document size is

important

Pre-Computing
Values

Pre-Computing
How?

A) Logs become the sole truth

B) Remember which log lines we have
already seen

Pre-Computing
How?

A) Logs become the sole truth ✔

B) Remember which log lines we have
already seen？？？

Pre-Computing
1. Timestamps

event timestamp < last timestamp:
we have seen it already

Milliseconds are not accurate enough

NTP clock skew

Replaying and bootstrapping does not work
since you can’t tell an old from a replayed
event

Pre-Computing
2. Counters

event id < last id: we have seen it already

How do you build a distributed, reliable,
sorted counter? How do you handle
service restarts? How can this not be the
SPOF of the service? No idea ...

Replaying and bootstrapping does not
work for the same reasons as before

Pre-Computing
3. Hashes

Event hash in current document:
we have seen it already

Bootstrapping and replaying just works

Overcounting cannot happen

On failure just replay the logs

but ...

Pre-Computing
3. Hashes

... how many hashes do we have?

Pre-Computing
3. Hashes

70M events per day -> 70M hashes

500K live ads -> 1400 events per day/ad

But a handful of outliers get
40.000 events / hour - each

sha1: 40 chars, md5: 32 chars, crc32: 8 chars

Collisions?

Pre-Computing
3. Hashes

sha1: 1400*40 = 56KB

md5: 1400*32 = 45KB

crc32: 1400*8 = 11KB

One day is too much - and this is
average

Pre-Computing
3. Hashes

Why do we store the hashes?

Usually events are played forward in
chronological order

Only during replay and failure we need older
hashes

Keep only “last couple” of hashes in the
document -> hot set

Pre-Computing
3. Hashes

Keep only the current hour in the main document
(hot set)

=> Hash must be unique per ad per hour -> Should
take care of collisions. Should ...

At nn:00 archive the hashes into a separate
document

Keep documents with older event hashes for as
long we want to be able to replay

Pre-Computing
3. Hashes

But with riak we don’t have TX ...

Pre-Computing
TX with Riak

First write archive doc and keep
events of last hour in hot set

Then on next event prune events
from previous hour from hot set

What if there is no next event?
Storm has tick tuples

Pre-Computing
Serialization

Document size is important ->
Serialization makes a difference

Kryo isn’t as fast as you might think

JSON isn’t as bad as you might think

Custom beats everything by a wide margin

Maintainability is important, too

Pre-Computing
Serialization

Maintainability is important, too

You can look at JSON but not at
protobuf

Schema evolution via Content-Type
headers

Pre-Computing
Persistence

Average ad has average number of hashes

Can be written in real-time

Outliers have orders of magnitude more
hashes

More hashes -> bigger docs & more writes
-> kills riak (even a handful of them)

Pre-Computing
Persistence

Simple back pressure rule saves us

Small doc -> write immediately

Doc above threshold -> defer write a bit
(the bigger the doc the longer, up to 30 sec)

-> Volatile docs receive lots of events during
defer period
(~ 5K events, saves 4,999 writes)

What’s next?

Next steps
More counters -> more hashes

gzip+protobuf saves another 30% and
(probably) produces less garbage -> less
GC

Constantly recompute static data from logs
-> less hashes and errors get flushed out
quickly. (Hadoop or Storm)

Next steps
Partition data at the source with Kafka

Memcached for saving even more writes

Span storage cluster across N>2 data
centers

Questions?

Thank you

frschroeder@ebay.com

