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The Future of High Performance 
Storage? 
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Everyone seems to agree. 



ioMemory 
▸ A New Memory tier called ioMemory 

• Leverages the best advantages of DRAM and rotating drives 

▸ High Speed like DRAM 

▸ Persistence and Large capacity of Spinning Hard Drives 

 

▸ PCIe based NAND Flash storage 
▸ Micro-second level Disk Access Latency - 15µs 

▸ Very high data throughput -  1,5GB/s 

▸ Very high IOPS – 400.000 random write/s 

▸ Scalable – stay ahead of data / performance demands 

▸ Advanced wear-leveling algorithm 

 

▸ N+1 Chip level redundancy  (think RAID protection on card) 

▸ 100% data integrity protection in case of power loss 

▸ Endurance is PBW – TB’s written daily for more than 8 years! 

 

 

 

 

 Manufactured by Fusion-io - OEM’ed by 



ioMemory vs Disk 
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= 4,000 x 

800,000 IOPs 150-200 IOPs 
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The compute performance problem 

▸ “Compute power continues to outpace performance delivered by Storage.” 

▸ “Problem is not getting better, its getting worse.” 
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Legacy solution to the data supply problem: 

Each option requires significant increase  

in CAPEX and OPEX, and does not  

fully address the problem. 

$
$

$
$

$
 • Add more disk 

• Add more memory 

• Add more servers 

• Optimize the  
application 



Networked storage data supply 
chain from application to flash 
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▸ 9 Intermediary components required 

▸All adding access delay, cost, complexity, and lowering reliability  

(especially the super capacitors)   

▸Requests must do a round trip touching everything TWICE… 

 

Application 

Server 

Processor 

Network 

Switch 

Storage 

Appliance 

Processor 

Disk RAID 

Controller 

SAS/SATA  

Bus and 

Protocol 

SSD 

Embedded 

CPU 

SSD  

RAM 

Battery/Sup

er 

Capacitors 

NAND  

Flash 

Network 

Adapter 

Network 

Adapter 



SSD data supply chain 
from application to flash 
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▸ 5 Intermediary components required 

▸All adding access delay, cost, complexity, and lowering reliability  

(especially the super capacitors)   
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A horse in front of a Ferrari? 
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Fusion-io Approach 
From Application…. to Flash 
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▸ 0 Intermediary components required 

▸No need for super capacitors because data is not  

"buffered” in DRAM 
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The landscape of sub second Timings 
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L1-L3 

Cache 10 ns 
DRAM    

100 ns 

Fusion-io 

15 µs 

SAN 

4 ms 

Blink of an eye 

1/10 second 

Get cup of Coffee 

2,5 minutes 

Fly to Thailand 

11,1 hours 
Heartbeat 

1 second 

Very Small - Kb Very expensive 

Volatile 
Non volatile 

HOW FAST DO YOU GET DATA TO THE FACTORY? 

Multiplier is 10m - 10.000.000 



Direct Cut Through Architecture 
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Fusion-io is not a SSD device 
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Usage Models – Baby Steps 

• Moving specific components of the database  

     to the ioDrives:  

▸ Tempdb database 

▸ Indexes 

▸ Frequently accessed tables 

▸ Transaction logs 

▸ Partition tables 
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All In 

• If database size permits, placing entire  

database system on Fusion-ioDrives  

provides maximum performance benefit 
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n Node Cluster 

Clustering / HA  with No Shared Storage! 

▸ Perfect NoSQL Model 

▸ MSFT SQL Server   
Always On 

▸ Oracle Dataguard 

▸ SIOS DataKeeper  

▸ Advantages 

• Fast replication 

• Just another block storage 
device 

 

 

Application Mirroring 

Individual storage 



Getting Performance To ESXi 

▸ External storage for  
virtual machines too costly 

▸ Fusion-io delivers IOPS 
to hosts and virtual machines 

SAN/NFS 
Storage 

IOPS 

SAN/NFS 
Storage 

IOPS 

ioTurbine software 
caches frequently used 
data on ioDrives 

Reduce 
SAN/NFS 

costs 
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Fusion-io as a storage appliance server 

▸ Standard HP, IBM, DELL Servers 

▸ Rack or Blades… 

▸ SHARED STORAGE 

▸ FC 

▸ ISCSI 

▸ HA MIRROR 



IoTurbine with ION cache store (distributed cache)  

▸ Best For 

• Enterprise class shared 

caching 

• Large scale server farms 

• Ideal where servers 

cannot accommodate 

local ioMemory 

• Each ESX(i) Host will 

have a unique ION LUN 

presented 

 

Cache Management 

Cache Store LUNs 

Delivered from ION 

Primary Storage 



OS Support 
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RHEL 5.6, 5.7, 5.8, 6.0, 6.1, 6.2 

SLES 10.4, 11, 11.1 

OEL 5.7, 6.0, 6.1, 6.2  

CentOS 5.6, 5.7, 6.0, 6.1, 6.2 

Debian Squeeze 

Fedora 15, 16  

openSUSE 12.1  

Ubuntu 10.04, 11.10 

Linux 

 

 

Solaris 10 x64 U8, U9, U10 

OpenSolaris 2009.06 x64 

OSX 10.6 and later  

FreeBSD 8,9 

Unix 

 

 

Windows Server 2003 SP2  

Windows 7 64 bit 

Windows 8 64 bit (in Oct) 

Windows Server 2008 R1 SP2  

Windows Server 2008 R2 

Windows Server 2012 (in Oct) 

Windows 

 

 

VMware ESX 4.0, 4.1  

VMware ESXi 4.0, 4.1  

VMware ESXi 5.0, 5.1 

Windows 2008 R2 with Hyper-V 

Hypervisors 

support.fusionio.com 



Flash Offers A New Architectural Choice 
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     Milliseconds 10-3  Microseconds 10-6    Nanoseconds 10-9 

CPU Cache DRAM 

Disk Drives 

Server-based Flash 



Evolution of Flash Performance 
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Lets look at some charts 
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Adding 3x the DRAM does not really improve things 
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HBase Server 

June 18, 2013 25 

▸ A typical server… 

 

CPU Cores: 32 with HT 

Memory: 128 GB 

Is your working set larger than 128GB? 



HBase Cluster 
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▸ With NoSQL Databases, we tend to scale out for 

DRAM 

Combined Resources 

CPU Cores: 96 

Memory: 384 GB 

More cores than needed to serve reads and writes. 



The HBase BucketCache (HBase-
7404) 
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Committed to HBase trunk. Will be in 0.96 release, backport patch for 

0.94 available.` 

 

Victim cache for LRUBlockCache – Move fast ioMemory close to DRAM cache 

+ 

https://issues.apache.org/jira/browse/HBASE-7404 

 

 
 

https://issues.apache.org/jira/browse/HBASE-7404
https://issues.apache.org/jira/browse/HBASE-7404
https://issues.apache.org/jira/browse/HBASE-7404


BucketCache Configuration 
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▸ In hbase-site.xml 

  

<property>     <name>hbase.bucketcache.ioengine</name>     <value>file:/path

/to/bucketcache.dat</value>   </property> 

  <property>     <name>hbase.bucketcache.size</name>  <!-- 2TB: unit is MB 

--> 

    <value>2097152</value> 

  </property> 

 

 



BucketCache Warm-up 
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Fusion-io Software Development Kit 
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Traditional Storage 

Proprietary Storage OS 

Storage Media 

Native Flash Translation Layer  

Storage Media 

Software Defined Storage 

Applications 

Block I/O 
 

Block I/O 
 

Enhanced I/O 
Atomic Writes / directFS 

Key-Value Store API 

Memory Access 
Extended Memory 

Auto Commit Memory 



DirectFS Linux file system 
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Native Flash Translation Layer 

block allocation, mapping, recycling  

ACID updates, logging/journaling, crash-recovery 

directFS 
file metadata mgmt 

Kernel block layer 

kernel-space 

user-space 

Ext3  

file metadata mgmt,   

block allocation, mapping, recycling, 

ACID updates, logging/journaling, crash-recovery 

Primitive Interfaces 

Application 

Linux VFS (virtual file system) abstraction layer 



directFS: Speed Through Simplicity 
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0 10000 20000 30000 40000 50000 60000 70000

directFS

ReiserFS

Ext4

Btrfs

XFS

L INES OF CODE  



Atomic writes – Transactional I/O 

▸ System call tells DirectFS that all I/O to this file should be 

treated as atomic 

 

▸ Avoids the partial page write problem 

 

▸ Accepted by T10 technical committee for SCSI standard 

 

▸ Minimal application changes required 

33 



Percona Server, MariaDB, MySQL 5.6 

▸ Efficient XtraDB/InnoDB storage engine 

▸ Well optimized for seek-less storage like flash 

▸ Many config parameters to fine-tune performance 

 

▸ What else can be done? 

• Lock contention can still be improved as seen by using 

multiple instances with the same storage device 

• Tapping into the native performance of flash by 

exposing key FTL features to the application 

34 



MySQL Writes Comparison 
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Traditional MySQL Writes MySQL with Atomic Writes 
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Atomic benchmarks 

First, lets sum up the MySQL benefits here: 

 

• Writing only 50% of the data otherwise required for 

ACID compliance 

 

That’s pretty much it…but it gives us 

▸ Twice the flash endurance 

▸ Much better latency because of fewer syscalls 

▸ Much better application throughput due to less I/O 

▸ Better concurrency due to fewer locks 

36 



Atomics   
50% more TPC-C throughput 

37 



Fusion-io advanced development 
 Storage Class Memory 

38 

 

 

Small Capacity DRAM (volatile) 

$$/GB Big Capacity Flash 

$/GB 

Memory-speed persistence 

Byte-addressable vs. block addressable 

Small Capacity SCM 

(persistent) Server Virtual Memory 

Server 



SCM research 

 

▸ Lets look at keeping a database log using memory 

semantics 

 

▸ Goal is to reduce latency, cost of flushing data to a 

persistent state and further minimize writes 

 

▸ SCM testing using modified Innosim toool 

39 



SCM logger interface 

▸ logger_open() 

 Open and initialize logging infrastructure within the FTL 

 

▸ logger_close() 

 Clean-up 

 

▸ logger_append() 

Append to head of log at memory speeds. This basically 

translates to a memcpy() 

 

▸ logger_sync() 

Serialize data using assembler ‘mfence’ instruction 
40 



Practical Database Use Case: 
MySQL 
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Nearly as fast  

as disabling 

the transaction 

log completely. 

Log transaction through block I/O No Logging Log to Fusion-io ACM 



The coming shift in software 
development 

42 

▸As an SSD, flash accelerates applications. 

At full maturity, Non-Volatile Memory 

will transform software development. 



Native Flash API availability 

▸  Percona Server: 5.5.31 

 

▸  MariaDB mainline: 5.5.31 

  

▸  Oracle MySQL:  

• https://code.launchpad.net/~tmathiasen/mysql-server/mysql-5.5-fio 

 

▸ Cassandra atomics implementation in progress 

 

▸ DirectFS public beta expected July 22nd 
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