
Big memory – Scale-in vs. Scale-out

Niklas Björkman
VP Technology, Starcounter

Simplicity and magic

“Any sufficiently advanced technology is
indistinguishable from magic.”

Arthur C. Clarke

“The future of computer power is pure simplicity.”
Douglas Adams

Today’s topics

History

Database landscape

Scale-In instead of Scale-out

Performance everywhere

History
Why do we do what we do today?

(Don’t worry, it’s just 2 slides)

SQL is born

SEQUEL by Dr. Codd in 1970
IBM and Oracle (Relational System) early adopters
First relational database released in 1980
Optimizations in traditional database to optimize for disk access
Extreme memory costs – need to store on disk

Dr Codd invented the relational data model around 1970.
”A Relational Model of Data for Large Shared Data Banks”,
Communications of the ACM 13 (6):377-387, 1970

RAM v’s history

1960 1970 1980 1990 2000 2010

0.005

3 000 000

6 000 000

1 MB of RAM was $750,000 in 1970 compared to 0.5 cents today

Today
Where are we today?

Landscape

Matt Aslett – 451 group

Alternatives today

Utilize the RAM

Scale In - use the RAM

Scale-In instead of out
All data in one set of RAM
Hardware limit at 2 TB (soon > 10 TB?) of data (64bit)
Compress data about 4 times
Transaction conflicts solved fast
Extreme performance
True ACID

√

The extra mile

Let’s see what happens if we use the RAM even further
Usually DB objects and App objects in different set of RAM
Share heap between application and database

RAM

Object heap

Application

Application

DBMS

Performance - reading

If used wisely we can scale read transactions linearly over the number of
cores

Transactions per second

CPU cores
2 4 6 8 10 12

2,000,000

4,000,000

6,000,000

Performance - writing

Depending of the number of transactional conflicts, writes will level out
at a certain level (ACID). Still 100 times faster than traditional relational
databases.

Transactions per second

CPU cores

Non-ACID

ACID

100,000

200,000

300,000

1 2 3 4 5 6

Scale-In and ACID

Atomicity
”C” without suffix or prefix
Isolation level like traditional databases
All writes secured on disk upon committed

CAP theorem (no ACID in scaling out)

Who needs ACID?

 Dealing with business-critical data like retail, money transfers and
logistics in a multi user environment

Conflicts will occur and need to
be managed by

Database

Application (hard for developers)

End user:
"Sorry we have just sold you a
product we already sold to
someone else"

New opportunities

No need for separate schema
The end of ORMs
Fast and auto solve transactional conflicts
POCO objects are your database
SQL directly on your POCO

We can simplify application development

Application programming

Set attribute [Database] on your CLR
class

Create object (INSERT)

Modify object (UPDATE)

Delete object (DELETE)

Query objects (SELECT)

Native new() operator

Native assignment operator (=)

Use method Delete()

Db.SQL(“SQL92”)

Database schema
(CREATE TABLE)

Traditional database Modern database

Database schema

[Database]
public class Employee
{
 public String Name;
 public DateTime? HireDate;
 public decimal Salary;
 public Department Department;
 public DateTime BirthDate;

 public int Age
 {

 get

 {
 return DateTime.Now.Year-BirthDate.Year;

 }
 }
}

Create object

[Database]

public class Employee

{

 public Employee() { }

}

Employee e = new Employee();

Modify object

Department d = new Department();

Employee e = new Employee();

e.Name = ”John”;
e.HireDate = null;
e.Salary = 20000;
e.Department = d;

Delete object

Department d = new Department();

Employee e = new Employee();

e.Name = ”John”;
e.HireDate = null;

e.Salary = 20000;

e.Department = d;

e.Delete();

Transactions

Transaction scopes
 Db.Transaction(()=>
 {

 Person p = new Person();

 p.Name = ”Albert”;
 }

Long lived transactions
 Transaction t = new Transaction();
 ...

 t.Commit(); // t. Rollback();

Parallel transactions

Next steps
Bring the performance all the way to the clients

What’s next?

Extreme performance
Reliability (ACID)
Easy to use API:s

Today we have databases with

Logical next steps
Easy to use connectivity
Super fast communication servers
Easy to use in modern applications

Communication Performance

A normal setup for a web based application

Internet Client
Web

Server

Database
App-

lication

Maybe do a little
special fix?

Communication Performance

Tie the web server, application and database closer together

Internet Client
Database

Application

Web server

Limitation - Network/OS

Internet
Database

Application

Web server

Modern DB – 200,000 requests
per second on 1 GB network

Solution - Network/OS

2013-11-22

Internet
Database

Application

Web server

Proxy
Web

Server

Proxy
Web

Server

Proxy
Web

Server

> 3,000,000 requests per second

Development performance

Modern applications with web standards
 REST/JSON
 JSON Patch (RFC 6902)

Modern Interactive applications using
 MVVM
 MV*
 WebComponents
 AngularJs

Modern standards

Easy to use REST API

Register URI

Server

Database

Application

Client

HTML, Android,
WPF, iOs …

REST

JSON

Trends

The trend is that we move away from server side rendering
Data is fetched from server - on the fly or mirrored MVVM

Register URI

View Model

Server

Database

Application

Client

HTML, Android,
WPF, iOs …

View Model

Mirroring

JSON/Session

JSON models

Simple JSON model

 “FirstName$”:"Albert",
 “LastName$”:"Einstein",
 “Quotes”: [
 { Text:"This is an example" }
]

JSON model automatically bound to persistent data

 PersonModel model = new PersonModel();

 model.Data = new Person();

REST verbs

Handle REST verbs server side

Handle.GET("/new-person", () =>

{

 PersonModel c = new PersonModel();

 Person p = new Person();

 p.FirstName = ”Albert”;
 p.LastName = ”Einstein”;
 c.Data = p;

 return c;

});

REST with body

Complete model in body

Handle.POST("/new-person-wModel", (PersonModel model) =>

{

 Person comp = new Person();

 comp.FirstName = model.FirstName;

 comp.LastName = model.LastName;

});

Controller

Handle client modifications on the server (optional)

class PersonModel : Json {

 void Handle(Input.FirstName input) {
 if (input.Value == ”Albert”) {
 Message = ”Not accepted value”;
 input.Cancel();

 }

 }

}

Binding – server side

Using declarative programming and binding allows automated updates

FirstName$:"Albert",
LastName$:"Einstein",
Quotes: [
 { Text:"This is an example" }
]

[Database]

public class Person {

 public String FirstName;

 public String LastName;

 public IEnumerable<Quote> Quotes {

 get{

 return Db.SQL<Quote>(

 “SELECT q FROM Quote WHERE q.Person=?”, this);
 }

 }

}

Binding – automatic updates

void Handle(Input.Text input) {

 new Quote(){

 Text = input.Value,

 Person = Data
 };

}

Controller detects that the ”Quotes” property will change in class Person

public IEnumerable<Quote> Quotes

{

 get

 {

 return Db.SQL<Quote>(

 “SELECT q FROM Quote WHERE q.Person=?”, this);
 }

}

Delta sent to client

View Model

Server

Database

Application

Client

HTML, Android,
WPF, iOs …

View Model

JSON
Patch

Json/Session

Example setup MVVM

Client

<label>

 {{item.FirstName$}}

</label>

{

 “FirstName$”:"Albert",
}

JSON patch (JSON)

public class Person{

 public String FirstName;

}

 void Handle(Input.FirstName input) {

 if (input.Value == ”John”)
 {

 Message = ”Not accepted value”;
 input.Cancel();

 }

 }

Controller

DB

Server

Super fast, super easy

Super fast
Database core
Application
Communication server

Super easy
 Database API
 Client-Server API
 To maintain
 Less lines of code

As ABBA would say

Money, money, money

Save money on

Hardware
Maintenance
Fewer developers
Faster to learn
Shorter time to market
Less DBA costs

Summary

History

Database landscape

Scale-In instead of Scale-out

Performance on all levels

Easy to use

Simplicity and magic!

Thanks for listening!

