
Surviving Data in
Large Doses

Tareq Abedrabbo
NoSQL Search Roadshow London 2013

About me

• CTO at OpenCredo

• Delivering large-scale data projects in a number of
domains

• Co-author of Neo4j in Action (Manning)

What this talk is
about…

Supermarkets

Meanwhile, in
DevLand

Bob is an application
developer

Bob wants to build an application.
Bob knows that a relational

database is definitely not the right
choice for his application

Bob chooses a NoSQL database
because he likes it (he secretly
thinks it’s good for his CV too).

Bob goes for a three-tier
architecture. It’s separation of
concerns. It’s best practice.

Bob builds an object model
first. It’s Domain Driven

Design. It’s best practice.

Bob uses an object mapping
framework. Databases should be

hidden behind layers of
abstraction. It’s best practice.

Bob hopes for the
best!

What challenges is
Bob facing?

Suitability of the data
model

Suitability of the
architecture and the

implementation

Ability to meet new
requirements

Being able to use the
selected technology to

the best of its ability

Performance

A number of applications built
on top of NoSQL technologies

end up unfit for purpose

How did we get ourselves
into such a mess?

• Technical evangelism

• Evolution in requirements

• Unthinking decisions

• Ill-informed opinions

Common problem: there is focus
on technology and

implementation, not on real value

So what’s the
alternative?

Separation of concerns
based on data flow

Data flow

• Lifecycle

• Structure

• Size

• Velocity

• Purpose

How?

Identify the concerns:
what do I care about?

Identify the locality of these
concerns:

where are the natural boundaries?

Build focused
specialised models

Compose the models
into a complete system

Computing is
data structures +

algorithms

If we accept that separation of
concerns should be applied to
algorithms, it is appropriate to
apply the same thinking to data

The real value of this form
of separation of concerns

is true decoupling

What’s out there

CQRS

Polyglot Persistence

How do I apply it?

It depends on the data
flow :)

For general-purpose data
platforms, micro services

work well

Build micro services that
are closer to the natural

underlying model

Other strategies are possible, for
example if the data is highly

volatile, consider in-memory grids

There are practical
considerations -

obviously

Don’t start with 10 different
databases because you think you
might eventually need all of them

How would that impact
support and operations?

There is potential for
simplification based on
clearly targeted usage

Links

• Twitter: @tareq_abedrabbo

• Blog: http://www.terminalstate.net

• OpenCredo: http://www.opencredo.com

Thank you!

http://www.terminalstate.net
http://www.opencredo.com

