
11

Stefan Armbruster
@darthvader42
stefan.armbruster@neotechnology.com

Introduction to
Neo4j

most Slides from:
Michael Hunger

2

The Path Forward

1.No .. NO .. NOSQL

2.Why graphs?

3.What's a graph database?

4.Some things about Neo4j.

5.How do people use Neo4j?

2

33

NOSQL

44

What is NOSQL?

It’s not “No to SQL”

It’s not “Never SQL”

It’s “Not Only SQL”
NOSQL \no-seek-wool\ n. Describes
ongoing trend where developers
increasingly opt for non-relational
databases to help solve their
problems, in an effort to use the right
tool for the right job.

55

NOSQL Databases

6

RDBMS

6

Living in a NOSQL World
D

e
n
si

ty
 ~

=
 C

o
m

p
le

x
it

y

Column
Family

Volume ~= Size

Key-Value
Store

Document
Databases

Graph
Databases

7

Trends in BigData & NOSQL

7

1. increasing data size (big data)

• “Every 2 days we create as much information as we did up to 2003”
- Eric Schmidt

2. increasingly connected data (graph data)

• for example, text documents to html

3. semi-structured data

• individualization of data, with common sub-set

4. architecture - a facade over multiple services

• from monolithic to modular, distributed applications

8

A Graph?

8

Yes, a graph

99

Leonhard Euler 1707-1783

1
0
1
0

Apr 15th 2013: Google Doodle
for Euler's birthday

1
1

They are everywhere

1
1

Flight Patterns

1
2

Graphs Everywhere
๏ Relationships in

• Politics, Economics, History, Science, Transportation

๏ Biology, Chemistry, Physics, Sociology

• Body, Ecosphere, Reaction, Interactions

๏ Internet

•Hardware, Software, Interaction

๏ Social Networks

• Family, Friends

•Work, Communities

•Neighbours, Cities, Society
1
2

1
3

Good Relationships

๏ the world is rich, messy and related data

๏ relationships are as least as important as the things they connect

๏Graphs = Whole > Σ parts

๏ complex interactions

๏ always changing, change of structures as well

๏Graph: Relationships are part of the data

๏ RDBMS: Relationships part of the fixed schema

1
3

1
4

Questions and Answers

๏ Complex Questions

๏ Answers lie between the lines (things)

๏ Locality of the information

๏Global searches / operations very expensive

๏ constant query time, regardless of data volume

1
4

1
5

Categories ?

๏ Categories == Classes, Trees ?

๏What if more than one category fits?

๏ Tags

๏ Categories vi relationships like „IS_A“

๏ any number, easy change

๏ „virtual“ Relationships - Traversals

๏ Category dynamically derived from queries

1
5

1
6
1
6

Everyone is talking about graphs...

1
7
1
7

Everyone is talking about graphs...

1
8

Each of us has not only one graph, but many!

1
8

1
9

Graph DB 101

1
9

2
0

A graph database...

2
0

NO: not for charts & diagrams, or vector artwork

YES: for storing data that is structured as a graph

remember linked lists, trees?

graphs are the general-purpose data structure

“A relational database may tell you the average age of everyone in
this session,

but a graph database will tell you who is most likely to buy you a
beer.”

2
1

You know relational

2
1

foo barfoo_bar

2
2
2
2

now consider relationships...

foo barfoo_bar

2
3

We're talking about a
Property Graph

2
3

Properties (each a key+value)

+ Indexes (for easy look-ups)

2
4

Looks different, fine. Who cares?

๏ a sample social graph

•with ~1,000 persons

๏ average 50 friends per person

๏ pathExists(a,b) limited to depth 4

๏ caches warmed up to eliminate disk I/O

2
4

persons query time

Relational database 1.000 2000ms

Neo4j 1.000 2ms

Neo4j 1.000.000 2ms

2
5

Graph Database: Pros & Cons
๏ Strengths

• Powerful data model, as general as RDBMS

• Fast, for connected data

• Easy to query

๏Weaknesses:

• Sharding (though they can scale reasonably well)

‣also, stay tuned for developments here

• Requires conceptual shift

‣though graph-like thinking becomes addictive

2
5

2
6

And, but, so how do you
query this "graph"

database?

2
6

2
7

// lookup starting point in an index
start n=node:People(name = ‘Andreas’)

Query a graph with a traversal

2
7

// then traverse to find results
start n=node:People(name = ‘Andreas’)
match (n)--()--(foaf) return foaf

2
8

Modeling for graphs

2
8

2
9
2
9

3
0
3
0

Adam

LOL Cat

FRIEND_OF
SHARED

COMMENTED

Sarah
FUNNY

ON

LIKES

3
1
3
1

Adam

LOL Cat

FRIEND_OF
SHARED

COMMENTED

Sarah
FUNNY

ON

LIKES

3
2

Neo4j - the Graph Database

3
2

3
3
3
3

3
4

(Neo4j) -[:IS_A]-> (Graph Database)

RUNS_AS

HIGH_AVAIL.

S
C

A
LE

S
_T

O

RU
N
S_

AS

R
U

N
S_O

N

PROVIDES

LICENSED_LIKE

INTEGRATES

T
R

A
V

E
R

S
A

LS

Shardin
g

Master/Sl
ave

3
4

3
5

Neo4j is a Graph Database
๏ A Graph Database:

• a schema-free Property Graph

• perfect for complex, highly connected data

๏ A Graph Database:

• reliable with real ACID Transactions

• scalable: 32 Billion Nodes, 32 Billion Relationships, 64 Billion
Properties

• fast with more than 1M traversals / second

• Server with REST API, or Embeddable on the JVM

• higher-performance with High-Availability (read scaling)
3
5

3
6

Whiteboard --> Data

3
6

Andre
as

Peter

Emil

Alliso
n

knows

knows knows

knows

// Cypher query - friend of a friend
start n=node(0)
match (n)--()--(foaf)
return foaf

3
7

Two Ways to Work with Neo4j

3
7

๏ 1. Embeddable on JVM

• Java, JRuby, Scala...

• Tomcat, Rails, Akka, etc.

• great for testing

Show me some code, pleaseShow me some code, please

GraphDatabaseService graphDb =
new EmbeddedGraphDatabase(“var/neo4j”);

Transaction tx = graphDb.beginTx();
try {
 Node steve = graphDb.createNode();
 Node michael = graphDb.createNode();

 steve.setProperty(“name”, “Steve Vinoski”);
 michael.setProperty(“name”, “Michael Hunger”);

 Relationship presentedWith = steve.createRelationshipTo(
 michael, PresentationTypes.PRESENTED_WITH);
 presentedWith.setProperty(“date”, today);
 tx.success();
} finally {
 tx.finish();
}

Spring Data Neo4j
@NodeEntity
public class Movie {
 @Indexed private String title;
 @RelatedToVia(type = “ACTS_IN”, direction=INCOMING)
 private Set<Role> cast;
 private Director director;
}

@NodeEntity
public class Actor {
 @RelatedTo(type = “ACTS_IN”)
 private Set<Movies> movies;
}

@RelationshipEntity
public class Role {
 @StartNode private Actor actor;
 @EndNode private Movie movie;
 private String roleName;
}

4
0

Cypher Query Language

๏Declarative query language

•Describe what you want, not how

• Based on pattern matching

๏ Examples:

4
0

START david=node:people(name=”David”) # index lookup
MATCH david-[:knows]-friends-[:knows]-new_friends
WHERE new_friends.age > 18
RETURN new_friends

START user=node(5, 15, 26, 28) # node IDs
MATCH user--friend
RETURN user, COUNT(friend), SUM(friend.money)

Create Graph with Cypher

CREATE
 (steve {name: “Steve Vinoski”})
 -[:PRESENTED_WITH {date:{day}}]->
 (michael {name: “Michael Hunger”})

4
2

Two Ways to Work with Neo4j

4
2

๏ 2. Server with REST API

• every language on the planet

• flexible deployment scenarios

•DIY server, or cloud managed

4
3

Bindings

4
3

REST://

4
4

Two Ways to Work with Neo4j

4
4

๏ Server capability == Embedded capability

• same scalability, transactionality, and availability

4
5

How to get started?
๏ Documentation

• docs.neo4j.org – tutorials+reference

• http://www.graphdatabases.com

• Neo4j in Action

• Good Relationships

๏ Get Neo4j

• http://neo4j.org/download

• http://addons.heroku.com/neo4j/

๏ Participate

• http://groups.google.com/group/neo4j

• http://neo4j.meetup.com

• a session like this one ;)

4
5

http://www.graphdatabases.com/
http://neo4j.org/download
http://addons.heroku.com/neo4j/
http://groups.google.com/group/neo4j
http://neo4j.meetup.com/

4
6

Thank you!

4
6

4
7

Cypher

a
pattern-matching
query language for

graphs
4
7

4
8
4
8

Cypher - overview
๏a pattern-matching query language

๏declarative grammar with clauses (like SQL)

๏aggregation, ordering, limits

๏ create, update, delete

4
9
4
9

Cypher: START + RETURN
๏START <lookup> RETURN <expressions>

๏START binds terms using simple look-up

•directly using known ids

•or based on indexed Property

๏RETURN expressions specify result set

// lookup node id 0, return that node
start n=node(0) return n
// lookup node in Index, return that node
start n=node:Person(name="Andreas") return n
// lookup all nodes, return all name properties
start n=node(*) return n.name

5
0
5
0

Cypher: MATCH
๏START <lookup> MATCH <pattern> RETURN <expr>

๏MATCH describes a pattern of nodes+relationships

•node terms in optional parenthesis

•lines with arrows for relationships

// lookup 'n', traverse any relationship to some 'm'
start n=node(0) match (n)--(m) return n,m
// any outgoing relationship from 'n' to 'm'
start n=node(0) match n-->m return n,m
// only 'KNOWS' relationships from 'n' to 'm'
start n=node(0) match n-[:KNOWS]->m return n,m
// from 'n' to 'm' and capture the relationship as 'r'
start n=node(0) match n-[r]->m return n,r,m
// from 'n' outgoing to 'm', then incoming from 'o'
start n=node(0) match n-->m<--o return n,m,o

5
1
5
1

Cypher: WHERE
๏START <lookup> [MATCH <pattern>]

๏WHERE <condition> RETURN <expr>

๏WHERE filters nodes or relationships

•uses expressions to constrain elements

// lookup all nodes as 'n', constrained to name 'Andreas'
start n=node(*) where n.name='Andreas' return n
// filter nodes where age is less than 30
start n=node(*) where n.age<30 return n
// filter using a regular expression
start n=node(*) where n.name =~ /Tob.*/ return n
// filter for a property exists
start n=node(*) where has(n.name) return n

5
2
5
2

Cypher: CREATE
๏CREATE <node>[,node or relationship] RETURN

<expr>

•create nodes with optional properties

•create relationship (must have a type)

// create an anonymous node
create n
// create node with a property, returning it
create n={name:'Andreas'} return n
// lookup 2 nodes, then create a relationship and return it
start n=node(0),m=node(1) create n-[r:KNOWS]-m return r
// lookup nodes, then create a relationship with properties
start n=node(1),m=node(2) create n-[r:KNOWS {since:2008}]->m

5
3
5
3

Cypher: SET
๏SET [<node property>] [<relationship property>]

•update a property on a node or relationship

•must follow a START

// update the name property
start n=node(0) set n.name='Peter'
// update many nodes, using a calculation
start n=node(*) set n.size=n.size+1
// match & capture a relationship, update a property
start n=node(1) match n-[r]-m set r.times=10

5
4
5
4

Cypher: DELETE
๏DELETE [<node>|<relationship>|<property>]

•delete a node, relationship or property

•must follow a START

•to delete a node, all relationships must be deleted
first

// delete a node
start n=node(5) delete n
// remove a node and all relationships
start n=node(3) match n-[r]-() delete n, r
// remove a property
start n=node(3) delete n.age

5
5
5
5

5
6

The Rabbithole

http://console.neo4j.org

This Graph: http://tinyurl.com/7cnvmlq
5
6

http://console.neo4j.org/
http://tinyurl.com/7cnvmlq

5
7

the Real World

5
7

San Jose, CA

Cisco.com

Industry: Communications Use case: Recommendations

• Call center volumes needed to be lowered by improving

the efficacy of online self service

• Leverage large amounts of knowledge stored in service

cases, solutions, articles, forums, etc.

• Problem resolution times, as well as support costs,

needed to be lowered

• Cisco.com serves customer and business customers with

Support Services

• Needed real-time recommendations, to encourage use of

online knowledge base

• Cisco had been successfully using Neo4j for its internal

master data management solution.

• Identified a strong fit for online recommendations

• Cases, solutions, articles, etc. continuously scraped for

cross-reference links, and represented in Neo4j

• Real-time reading recommendations via Neo4j

• Neo4j Enterprise with HA cluster

• The result: customers obtain help faster, with decreased

reliance on customer support

Support
Case

Support
Case

Support
Case

Support
Case

Knowledg
e

Base
Article

Knowledg
e

Base
Article

SolutionSolution

Knowledg
e

Base
Article

Knowledg
e

Base
Article

Knowledg
e

Base
Article

Knowledg
e

Base
Article

MessageMessage

San Jose, CA

Cisco HMP

Industry: Communications Use case: Master Data Management

• Sales compensation system had become unable to meet

Cisco’s needs

• Existing Oracle RAC system had reached its limits:

• Insufficient flexibility for handling complex

organizational hierarchies and mappings

• “Real-time” queries were taking > 1 minute!

• Business-critical “P1” system needs to be continually

available, with zero downtime

• One of the world’s largest communications equipment

manufacturers#91 Global 2000. $44B in annual sales.

• Needed a system that could accommodate its master

data hierarchies in a performant way

• HMP is a Master Data Management system at whose

heart is Neo4j. Data access services available 24x7 to

applications companywide

• Cisco created a new system: the Hierarchy Management

Platform (HMP)

• Allows Cisco to manage master data centrally, and centralize

data access and business rules

• Neo4j provided “Minutes to Milliseconds” performance over

Oracle RAC, serving master data in real time

• The graph database model provided exactly the flexibility

needed to support Cisco’s business rules

• HMP so successful that it has expanded to

include product hierarchy

Industry: Logistics Use case: Parcel Routing

• 24x7 availability, year round

• Peak loads of 2500+ parcels per second

• Complex and diverse software stack

• Need predictable performance & linear scalability

• Daily changes to logistics network: route from any point,

to any point

• One of the world’s largest logistics carriers

• Projected to outgrow capacity of old system

• New parcel routing system

• Single source of truth for entire network

• B2C & B2B parcel tracking

• Real-time routing: up to 5M parcels per day

• Neo4j provides the ideal domain fit:

• a logistics network is a graph

• Extreme availability & performance with Neo4j clustering

• Hugely simplified queries, vs. relational for complex routing

• Flexible data model can reflect real-world data variance much

better than relational

• “Whiteboard friendly” model easy to understand

Sausalito, CA

GlassDoor

Industry: Online Job Search Use case: Social / Recommendations

• Wanted to leverage known fact that most jobs are found

through personal & professional connections

• Needed to rely on an existing source of social network

data. Facebook was the ideal choice.

• End users needed to get instant gratification

• Aiming to have the best job search service, in a very

competitive market

• Online jobs and career community, providing anonymized

inside information to job seekers

• First-to-market with a product that let users find jobs through

their network of Facebook friends

• Job recommendations served real-time from Neo4j

• Individual Facebook graphs imported real-time into Neo4j

• Glassdoor now stores > 50% of the entire Facebook social

graph

• Neo4j cluster has grown seamlessly, with new instances being

brought online as graph size and load have increased

PersonPerson

CompanyCompany

KN
OW

S

PersonPerson

PersonPerson

KNOWS

CompanyCompany
KN

O
W

S

WORKS_AT

WORKS_AT

Paris, France

SFR

Industry: Communications Use case: Network Management

• Infrastructure maintenance took one full week to plan,

because of the need to model network impacts

• Needed rapid, automated “what if” analysis to ensure

resilience during unplanned network outagesIdentify

weaknesses in the network to uncover the need for

additional redundancy

• Network information spread across > 30 systems, with

daily changes to network infrastructureBusiness needs

sometimes changed very rapidly

• Second largest communications company in France

• Part of Vivendi Group, partnering with Vodafone

• Flexible network inventory management system, to support

modeling, aggregation & troubleshooting

• Single source of truth (Neo4j) representing the entire network

• Dynamic system loads data from 30+ systems, and allows

new applications to access network data

• Modeling efforts greatly reduced because of the near 1:1

mapping between the real world and the graph

• Flexible schema highly adaptable to changing business

requirements

RouterRouter

ServiceService

DEP
EN

DS_
ON

SwitchSwitch SwitchSwitch

RouterRouter

Fiber
Link
Fiber
Link Fiber

Link
Fiber
Link

Fiber
Link
Fiber
Link

Oceanfloor
Cable

Oceanfloor
Cable

D
EP

EN
D

S_
O

N

D
EPEN

D
S_O

N

DEPENDS_ON

D
EPEN

D
S_O

N

DEPENDS_ON

DEPENDS_ON

DEPENDS_ON

DEPENDS_ON

D
EP

EN
D

S_
O

N

LINKED

LINKED

LIN
KE

D

DEPENDS_ON

Frankfurt, Germany

Deutsche Telecom

Industry: Communications Use case: Social gaming

• The Fanorakel application allows fans to have an

interactive experience while watching sports

• Fans can vote for referee decisions and interact with

other fans watching the game

• Highly connected dataset with real-time updates

• Queries need to be served real-time on rapidly changing

data

• One technical challenge is to handle the very high spikes

of activity during popular games

• Europe’s largest communications company

• Provider of mobile & land telephone lines to consumers

and businesses, as well as internet services, television,

and other services

• Interactive, social offering gives fans a way to experience the

game more closely

• Increased customer stickiness for Deutsche Telekom

• A completely new channel for reaching customers with

information, promotions, and ads

• Clear competitive advantage

Interactive Television
Programming

Global (U.S., France)

Hewlett Packard

Industry: Web/ISV, Communications Use case: Network Management

• Use network topology information to identify root

problems causes on the network

• Simplify alarm handling by human operators

• Automate handling of certain types of alarms

• Help operators respond rapidly to network issues

• Filter/group/eliminate redundant Network Management

System alarms by event correlation

• World’s largest provider of IT infrastructure, software &

services

• HP’s Unified Correlation Analyzer (UCA) application is a

key application inside HP’s OSS Assurance portfolio

• Carrier-class resource & service management, problem

determination, root cause & service impact analysis

• Helps communications operators manage large, complex

and fast changing networks

• Accelerated product development time

• Extremely fast querying of network topology

• Graph representation a perfect domain fit

• 24x7 carrier-grade reliability with Neo4j HA clustering

• Met objective in under 6 months

Oslo, Norway

Telenor

Industry: Communications Use case: Resource Authorization & Access Control

• Degrading relational performance. User login taking

minutes while system retrieved access rights

• Millions of plans, customers, admins, groups.

Highly interconnected data set w/massive joins

• Nightly batch workaround solved the performance

problem, but meant data was no longer current

• Primary system was Sybase. Batch pre-compute

workaround projected to reach 9 hours by 2014: longer

than the nightly batch window

• 10th largest Telco provider in the world, leading in the

Nordics

• Online self-serve system where large business admins

manage employee subscriptions and plans

• Mission-critical system whose availability and

responsiveness is critical to customer satisfaction

• Moved authorization functionality from Sybase to Neo4j

• Modeling the resource graph in Neo4j was straightforward, as

the domain is inherently a graph

• Able to retire the batch process, and move to real-time

responses: measured in milliseconds

• Users able to see fresh data, not yesterday’s

snapshotCustomer retention risks fully mitigated

Subscriptio
n

Subscriptio
n

AccountAccount

CustomerCustomer

CustomerCustomer

SUBSCRIBED_BY

CONTROLLED_BY

PART_OF

UserUser

USER_ACCESS

Zürich, Switzerland

Junisphere

Industry: Web/ISV, Communications Use case: Data Center Management

• “Business Service Management” requires mapping of

complex graph, covering: business processes--> business

services--> IT infrastructure

• Embed capability of storing and retrieving this

information into OEM application

• Re-architecting outdated C++ application based on

relational database, with Java

• Junisphere AG is a Zurich-based IT solutions provider

• Founded in 2001.

• Profitable.

• Self funded.

• Software & services.

• Novel approach to infrastructure monitoring:

Starts with the end user, mapped to business processes

and services, and dependent infrastructure

• Actively sought out a Java-based solution that could store data

as a graph

• Domain model is reflected directly in the database:“No time

lost in translation”

• “Our business and enterprise consultants now speak the same

language, and can model the domain with the database on a

1:1 ratio.”

• Spring Data Neo4j strong fit for Java architecture

San Francisco, CA

Teachscape

Industry: Education Use case: Resource Authorization & Access Control

• Neo4j was selected to be at the heart of a new

architecture. The user management system, centered

around Neo4j, will be used to support single sign-on, user

management, contract management, and end-user

access to their subscription entitlements.

• Teachscape, Inc. develops online learning tools for K-12

teachers, school principals, and other instructional

leaders.

• Teachscape evaluated relational as an option, considering

MySQL and Oracle.

• Neo4j was selected because the graph data model

provides a more natural fit for managing organizational

hierarchy and access to assets.

• Domain and technology fit simple domain model where the

relationships are relatively complex.

• Secondary factors included support for transactions, strong Java

support, and well-implemented Lucene indexing integration

• Speed and Flexibility The business depends on being able to do

complex walks quickly and efficiently. This was a major factor in the

decision to use Neo4j.

• Ease of Use accommodate efficient access for home-grown and

commercial off-the-shelf applications, as well as ad-hoc use.

• Extreme availability & performance with Neo4j clustering

• Hugely simplified queries, vs. relational for complex routing

• Flexible data model can reflect real-world data variance much better

than relational

• “Whiteboard friendly” model easy to understand

6
8
6
8

Really, once you start
thinking in graphs
it's hard to stop

Recommendations MDM

Systems
Management

Geospatial

Social computing

Business intelligence

Biotechnology

Making Sense of all that
data

your brain
access control

linguistics

catalogs

genealogy routing

compensation market vectors

What will you build?

6
9

Google "neo4j"
๏ [docs.]neo4j.org

๏ [news.]neotechnology.com

๏ github.com/neo4j

๏ neo4j.meetup.com

๏ graphconnect.com

6
9

7
0
7
0

High Availability

7
1

Scaling on a single server

7
1

๏ data size can increase into the billions

๏ however

• performance relies on memory caches

• server must be taken offline for backups

• single point of failure

๏ For 24x7 production, it's time to introduce HA

7
2

High Availability

7
2

๏master-slave replication

• read/write to any cluster member

• slave writes commit to master first (redundancy)

•master writes are faster

• all writes propagate to slaves (polling interval)

7
3

High Availability

7
3

๏ automatic fail-over

• any cluster member can be elected master

• on failure, a new master will be automatically elected

• a failed master can re-join as a slave

• automatic branch detection & resolution

7
4

High Availability

7
4

๏ online backups

• backup pulls updates directly from live cluster

• backup is a full, directly useable Neo4j database

๏ to restore: shutdown cluster, distribute backup, restart

7
5

3 Lessons Learned

7
5

7
6

1. Healthy Relationships

7
6

๏ replace many-to-many join tables...

name

code

word_count

Language

name

code

flag_uri

Country

IS_SPOKEN_IN

as_primary

language_code

language_name

word_count

Language

country_code

country_name

flag_uri

Country

language_code

country_code

primary

LanguageCountry

๏ ...with a relationship in the graph

7
7

2. Property Lists

๏Don’t try to embed multiple values into a single property

๏ That makes it harder to traverse using these values

7
7

name: “Canada”

languages_spoken: “[‘English’, ‘French’]”

name: “Canada” language: “English”

language: “French”

spoken_in

spoken_in

name: “USA”

name: “France”

spoken_in

spoken_in

๏ Instead, extract “list” values into separate nodes

7
8

3. One Concept Per Node

๏Don’t bundle multiple concepts

7
8

name

flag_uri

language_name

number_of_words

yes_in_langauge

no_in_language

currency_code

currency_name

Country

USES_CURRENCY

name

flag_uri

Country

name

number_of_words

yes

no

Language

SPEAKS

code

name

Currency

๏ Instead, break out the separate concepts...

7
9

3 Lessons Learned

๏Use Relationships

๏Use Relationships

๏Use Relationships

7
9

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79

