
Fusion-io Confidential—Copyright © 2013 Fusion-io, Inc. All rights reserved. Fusion-io Confidential—Copyright © 2013 Fusion-io, Inc. All rights reserved.

Running NoSQL natively on flash
Thomas Rochner

trochner@fusionio.com

Topics – NoSQL Munich 2013

1.  What are we building ?

2.  Why are we building it?

3.  ioMemory SDK

4.  KV-API

5.  Direct FS

6.  Memory Access Semantics

7.  Where are we headed?

April 17, 2013 2

⌃
2006

⌃
2007

⌃
2008

⌃
2009

⌃
2010

⌃
2011

⌃
2012

⌃
2013

Mission to
consolidate
memory and
storage

ioMemory
technology
unveiled

First products
launched

1 million IOPS
IBM
Quicksilver

Dell strategic
investment

HP OEMs
products

IBM OEMs
products

Samsung
strategic
investment

Dell OEMs
products

VSL
introduced

IPO on NYSE
ioTurbine
acquired

ioDrive2
announced

Supermicro
OEMs
products

1 Billion IOPS
2,500
customers

>120 channel
and alliance
partners
ioFX
announced

ioMemory
SDK
introduced
Cisco OEMs
products

ioScale
announced at
Open
Compute
Summit

Fusion-io First Mover Milestones

April 17, 2013 3

Fusion-io Accelerates

April 17, 2013 4

Analytics Search

ORACLE Text

Messaging

MQ

Databases

INFORMIX

Virtualization

KVM

HPC

GPFS

Big Data

Security/Logging

Collaboration

Lotus

Development Web

LAMP

Caching Workstation

What is Fusion-io?

▸  A New Memory tier called ioMemory
•  Leverages the best advantages of DRAM and rotating drives

▸  High Speed near like DRAM
▸  Persistence and Large capacity of Spinning Hard Drives

▸  PCIe based NAND Flash storage
▸  Micro-second level Disk Access Latency - 15µs
▸  Very high data throughput - 1,5GB/s
▸  Very high IOPS – 535.000 – 800.000 random write/s
▸  Scalable – stay ahead of data / performance demands
▸  Advanced wear-leveling algorithm
▸  N+1 Chip level redundancy (think RAID protection on card)100% data integrity

protection in case of power loss
▸  Endurance is PBW – TB’s written daily for more than 8 years!

Up to 3 TB of capacity
per x4 PCI Express slot

Up to 2.4TB of capacity
per x8 PCI Express slot

Up to 10.24TB to maximize
performance for large data sets

1650 GB of workstation
acceleration

Up to 1.2TB for maximum
performance density

Up to 3.2 of Hyperscale
Acceleration

Direct Acceleration

April 17, 2013 6

MEZZANINE

Topics – NoSQL Munich 2013

1.  What are we building ?

2.  Why are we building it?

3.  ioMemory SDK

4.  KV-API

5.  Direct FS

6.  Memory Access Semantics

7.  Where are we headed?

April 17, 2013 7

April 17, 2013 8

L1-L3
Cache 10 ns

DRAM
100 ns

Fusion-io
15 µs

SAN
4 ms

Blink of an eye
1/10 second

Get Coffee
2,5 minutes

Fly to Australia
11,1 hours

Heartbeat
1 second

Very Small - Kb Very expensive
Volatile Non volatile

Multiplier is 10m - 10.000.000

The landscape of sub second Timings.
How fast do you get data to the factory?

37% of servers are massively underutilized¹…

SLOW STORAGE LEADS TO IDLE CAPACITY

According to Moore’s Law, processing performance doubles every 18 months

1 Source: IDC's Server Workloads 2010, July 2010
2 Source: Taming the Power Hungry Data Center, Fusion-io White Paper

Server is idle
80% of the time

CPUs

Storage R
el

at
iv

e
Pe

rf
or

m
an

ce

…because the performance gap continues to grow

2000 2005 1985 1990 1995 2010

Growing
performance

gap²

April 17, 2013 © 2012 Fusion-io, Inc. All rights reserved. 9

SPINNING MEDIA
OVER 150 YEARS OLD

SSD treats memory like disk

© Fusion-io

P
C

Ie

DRAM

Host
CPU

App
OS

FLASH AS DISK FLASH AS MEMORY

Flash Architectures

P
C

Ie

S
A

S

DRAM

Data path
Controller

NAND

Host
CPU

RAID
Controller

App
OS

SC

12 April 17, 2013

Cut-through Architecture and VSL

April 17, 2013 13

▸ Sophisticated architecture
•  maximum performance

▸  Intelligent software
•  advanced features

Kernel

File System

Virtual Storage Layer (VSL)

ioMemory

Applications/Databases PCIe

DRAM /
Memory /
Operating System and
Application Memory io

M
em

or
y

V
irt

ua
liz

at
io

n
Ta

bl
es

Channels Wide

B
an

ks

ioDrive ioMemory
Data-Path
Controller

Commands

Host

Virtual Storage Layer
(VSL)

D
A

T
A

 T
R

A
N

S
F

E
R

S

CPU and cores

Balanced Performance
Affects Throughput

SSD

ioScale

Queuing behind slow writes causes SSD latency spikes

ioMemory balances read/write performance for consistent throughput

14 April 17, 2013

Topics – NoSQL Munich 2013

1.  What are we building ?

2.  Why are we building it?

3.  ioMemory SDK

4.  KV-API

5.  Direct FS

6.  Memory Access Semantics

7.  Where are we headed?

April 17, 2013 15

NoSQL Software challenges

•  Keeping NoSQL software simplicity with data
persistence

•  Transforming in-memory structures to block I/O

•  Tiering data between DRAM and persistent storage

•  Keeping latency low with data persistence

•  Scaling up

April 17, 2013 16

ioMemory Software Development Kit

•  Native programming interfaces

•  Access flash as a memory

•  Eliminate legacy software
layers

•  Simplify application authoring

•  Accelerate time-to-market
April 17, 2013 © 2012 Fusion-io, Inc. All rights reserved. 17

NVM Software interfaces
▸  Industry-first, direct API access to non-volatile memory’s unique

characteristics.

▸  The ioMemory SDK was introduced to help developers:

•  Write less code to create high-performing apps

•  Tap into performance not available with conventional I/O access to
SSDs

•  Reduce operating costs by decreasing RAM while increasing NVM

April 17, 2013 18

Direct-Access to non-volatile
memory is now emerging

▸ Developers are beginning to manipulate
data

 directly in Non-Volatile Memory (NVM)

without converting to basic block I/O.

April 17, 2013 19

Conventional I/O access
APPLICATION

Application source code translates
native data structures into block I/O

Block
I/O

Network
File

Block
I/O

April 17, 2013 20

Traditional Storage

Proprietary Storage OS

Storage Media

Open Interface Layer

Storage Media

Software Defined Storage

Conventional I/O access

native nvm access: I/O
APPLICATION

Application source code

Application source code does I/
O with native data structures

Atomic I/O
Transaction

User-
Defined
Object

Key-Value
Object

Block
I/O

Network
File

Block
I/O

April 17, 2013 21

Traditional Storage

Proprietary Storage OS

Storage Media

Open Interface Layer

Storage Media

Software Defined Storage

Conventional I/O access

Direct access I/O

native nvm access: persistent memory
APPLICATION

Application source code
Application source code

Application source code manipulates
data structures natively in NV Memory

High-speed
Log

Checkpointed
Memory

Memory
Transaction Atomic I/O

Transaction
User-

Defined
Object

Key-Value
Object

Block
I/O

Network
File

Block
I/O

April 17, 2013 22

Traditional Storage

Proprietary Storage OS

Storage Media

Open Interface Layer

Storage Media

Software Defined Storage

Conventional I/O access

NV Memory access

Direct access I/O

Tradi&onal*
SSDs*

ioMemory™*with*
Conven&onal*I/O*

ioMemory™*as*
Transparent*Cache*

ioMemory™*with**
direct*access*I/O*

ioMemory™*with**
memory*seman&cs**

A
p
p
lic
a
&
o
n
*

Applica&on*

A
p
p
lic
a
&
o
n
*

Applica&on* Applica&on* Applica&on* Applica&on*

User?defined*I/O*
API*Libraries*

User?defined*
Memory*API*Libraries*

OS*Block*I/O* OS*Block*I/O* OS*Block*I/O* Direct?access*I/O*
API*Libraries*

Memory*Seman&cs**
API*Libraries*

H
o
st
*

H
o
st
*

File*System* File*System* File*System*
directFS*–**

NVM*filesystem*
directFS*–*

NVM*filesystem*

***Block*Layer* Block*Layer* Block*Layer* I/O*Primi&ves* Memory*Primi&ves*

SAS/SATA*
VSL™**

expanded*flash*
transla&on*layer*

directCache™*

VSL™* VSL™*
Network*

VSL™*

R
e
m
o
te
*

RAID*Controller*

Read/Write* Read/Write* Read/Write* Read/Write* CPU*Load/Store*
Flash*

Transla&on*
Layer*

Read/Write*

Na&ve*Access*
|*

23 April 17, 2013

Flash memory evolution

Topics – NoSQL Munich 2013

1.  What are we building ?

2.  Why are we building it?

3.  ioMemory SDK

4.  KV-API

5.  Direct FS

6.  Memory Access Semantics

7.  Where are we headed?

April 17, 2013 24

Example: Key-Value Store API
Library

April 17, 2013 25

key value
1-128B 64b-1MB

kv_put() kv_get() or
kv_batch_get()

key expiration
timer marks KV
pair for VSL
garbage
collection

key hashed into
sparse address

space to
simplify
collision

management

value returned
through single
I/O operation,
regardless of

value size

key value
key value
key value

pool A
pool B

pool C

kv_get_current(), kv_next()

Iterate through
each KV pair in

a pool of
related keys

Atomic transaction
envelope

Application issues call to Key-Value Store API

key

value

Virtual Storage Layer

Key-Value Store API Library
Benchmarks
(native KV Get/Put vs. raw reads/writes)

0"

20000"

40000"

60000"

80000"

100000"

120000"

140000"

0" 20" 40" 60" 80" 100" 120" 140"

GE
Ts
/s
&

Threads&

Sample&Performance&5&GET&

512B"

4KB"

16KB"

64KB"

0"

20000"

40000"

60000"

80000"

100000"

120000"

0" 20" 40" 60" 80" 100" 120" 140"

PU
Ts/

s&

Threads&

Sample&Performance&4&PUT&

512B"

4KB"

16KB"

64KB"

0"

20000"

40000"

60000"

80000"

100000"

120000"

140000"

0" 20" 40" 60" 80"

OP
S/s

&

Threads&

Performane&rela2ve&to&ioDrive&

512B"Key"GET"

1KB"FIO"READ"

0"

20000"

40000"

60000"

80000"

100000"

120000"

0" 10" 20" 30" 40" 50" 60" 70"

OP
S/s

&

Threads&

Performance&rela3ve&to&ioDrive&

512B"Key"PUT"

1K2FIO"WRITE"

Sample Performance - GET

Performance relative to ioDrive

Sample Performance - PUT

Performance relative to ioDrive

1U HP blade server with 16 GB RAM, 8 CPU cores - Intel(R) Xeon(R) CPU X5472 @ 3.00GHz with single 1.2 TB ioDrive2 mono

SIGNIF ICANTLY MORE FUNCTIONALITY WITH NEGLIGIBLE PERFORMANCE COST

April 17, 2013 26

Key-Value Store API library Benchmarks:
(vs memcachedb)

April 17, 2013 27

Membase ioDrive vs. HDD

April 17, 2013 28

MongoDB cache warmup

April 17, 2013 29

Key-value store API Library:
Sample Uses and Benefits

April 17, 2013 30

▸ NoSQL Applications
Increase performance by
eliminating packing and
unpacking blocks,
defragmentation, and duplicate
metadata at app layer.

Reduce application I/O through
batched put and get operations.

Reduce overprovisioning due to
lack of coordination between
two-layers of garbage collection
(application-layer and flash-
layer). Some top NoSQL
applications recommend over-
provisioning by 3x due to this.

•  95% performance of raw
device
Smarter media now natively
understands a key-value I/O interface
with lock-free updates, crash
recovery, and no additional metadata
overhead.

•  Up to 3x capacity increase
Dramatically reduces over-
provisioning with coordinated garbage
collection and automated key expiry.

•  3x throughput on same SSD
Early benchmarks comparing against
memcached with BerkeleyDB
persistence show up to 3x
improvement.

Topics – NoSQL Munich 2013

1.  What are we building ?

2.  Why are we building it?

3.  ioMemory SDK

4.  KV-API

5.  Direct FS

6.  Memory Access Semantics

7.  Where are we headed?

April 17, 2013 31

directFS – Eliminating duplicate
logic

April 17, 2013 32

Linux VFS

Kernel Block Layer

Device Driver

Sector Mapping

M
et

a
da

ta

ext / btrfs / xfs DirectFS

Driver Primitives

M
eta data

DIRECTFS –
Benefits in Eliminating Duplicate logic

April 17, 2013 33

File System Lines of Code

directFS 6879

ReiserFS 19996

ext4 25837

btrfs 51925

XFS 63230

directFS: Native Flash Filesystem

▸  File system convenience

▸  Raw block performance

▸  No compromise necessary

B
an

dw
id

th
 (M

iB
/s

)
I/O Size

Raw Block directFS

8 Threads

34 April 17, 2013

directFS: Consistent Low Latency

Sample

La
te

nc
y

(µ
s)

Fusion-io DFS vs EXT4 write latency
1000 512 Byte Sequential Write with O_DIRECT

DFS
EXT4

35 April 17, 2013

MySQL: directFS and Atomic Writes

Double-write disabled – Non-ACID

Double-write – ACID

XFS directFS with Atomic I/O

50% More
ACID transactions

Atomic writes – ACID

36 April 17, 2013

Case Study: Percona SERVER
(MySQL)
▸ Percona has added atomics support to Percona

Server 5.5
•  Removes the need of the MySQL double write buffer

•  Ensures data integrity in case of system crashes

•  Writes 50% less, great for flash

•  Removes complexity from the software stack

•  Improves both transaction bandwidth and latency

•  Works though the DirectFS filesystem or on RAW
devices

April 17, 2013 37

Topics – NoSQL Munich 2013

1.  What are we building ?

2.  Why are we building it?

3.  ioMemory SDK

4.  KV-API

5.  Direct FS

6.  Memory Access Semantics

7.  Where are we headed?

April 17, 2013 38

Range of memory-Access Semantics

April 17, 2013 39

Extended
Memory Volatile

Transparently extends DRAM
onto flash, extending
application virtual memory

Checkpointed
Memory

Volatile with non-volatile
checkpoints

Region of application
virtual memory with ability to
preserve snapshots to flash
namespace

Auto-Commit
Memory™ Non-volatile

Region of application memory
automatically persisted to non-
volatile memory and
recoverable post-system failure

OS Swap vs. Extended Memory

•  Originally designed as a last resort to prevent OOM (out-of-memory) failures
•  Never tuned for high-performance demand-paging
•  Never tuned for multi-threaded apps
•  Poor performance, ex. < 30 MB/sec throughput

•  No application code changes required
•  Designed to migrate hot pages to DRAM and cold pages to ioMemory
•  Tuned to run natively on flash (leverages native characteristics)
•  Tuned for multi-threaded apps
•  10-15x throughput improvement over standard OS Swap

April 17, 2013 40

Non-Volatile Storage
(Disks, SSDs, etc.)

System Memory

OS SWAP
Mechanism

NV Memory
(volatile usage)

System Memory

Extended Memory
Mechanism

Virtual Storage Layer

Application issues calls to transactional memory interface

d d d d

Example: Memory transaction
primitives

April 17, 2013 41

1. Allocate pages
app virtual address space

CPU loads/stores
data to ACMTM

pages

Process allocate ACMTM pages
and maps to virtual address
space

2. memcpy()
Process writes and
reads to pages
through standard
memory-access
semantics

3. Checkpoint pages

d d d d

d d d d

S
ystem

 failure event

5. Restore state
app virtual address space

Re-started process maps
restored snapshot pages into
virtual address space

Application-consistent snapshot
pages are created or updated

working
pages

snapshot
pages

d d d d

d d d d

d d d d

System failure
automatically
preserves
snapshot pages

d d d d 4. Destage pages

d d d d
Completed

pages

d d d d
Pages persisted

to flash
namespace

Comparing i/o and memory access semantics

April 17, 2013 42

I/O

I/O semantics examples:
•  Open file descriptor – open(), read(), write(), seek(), close()
•  (New) Write multiple data blocks atomically, nvm_vectored_write()
•  (New) Open key-value store – nvm_kv_open(), kv_put(), kv_get(),

kv_batch_*()

Memory
Access

(Volatile)

Volatile memory semantics example:
•  Allocate virtual memory, e.g. malloc()
•  memcpy/pointer dereference writes (or reads) to memory address
•  (Improved) Page-faulting transparently loads data from NVM into memory

Memory
Access

(Non-

Volatile)

Non-volatile memory semantics example:
•  (New) Allocate and map Auto-Commit Memory™ (ACM) virtual memory pages
•  memcpy/pointer dereference writes (or reads) to memory address
•  (New) Call checkpoint() to create application-consistent ACM page snapshots
•  (New) After system failure, remap ACM snapshot pages to recover memory

state
•  (New) De-stage completed ACM pages to NVM namespace
•  (New) Remap and access ACM pages from NVM namespace at any time

Native NVM Access |

43 April 17, 2013

Flash memory evolution
Traditional SSDs ioMemory™ with

Conventional I/O
ioMemory™ as

Transparent Cache
ioMemory™ with
direct access I/O

ioMemory™ with
memory semantics

A
P

P
L

IC
A

T
IO

N

Application

A
P

P
L

IC
A

T
IO

N

Application Application

Application Application

User-defined
I/O API

Libraries
User-defined Memory

API Libraries

OS Block I/O OS Block I/O OS Block I/O Direct-access I/O
API Libraries

Memory Semantics
API Libraries

H
O

S
T

File System

H
O

S
T

File System File System directFS –
NVM filesystem

directFS –
NVM filesystem

 Block Layer Block Layer Block Layer I/O Primitives Memory Primitives

SAS/SATA VSL™
expanded flash
translation layer

directCache™
VSL™ VSL™

Network VSL™

R
E

M
O

T
E

RAID Controller

Read/Write Read/Write Read/Write Read/Write CPU Load/Store
Flash Translation

Layer

Read/Write

Open NVM development Interfaces

April 17, 2013 44

I/O Semantics (explicit persistence) Memory Semantics (implicit persistence)

API Libraries:
Open Source

Open Interface

directKV-s
(key-value store)

directKV-c
(key-value cache)

User-
Defined
Libraries

memLOG
(high-speed logging)

memSnap
(Checkpointed

Memory)

POSIX Filesystem:
Open Source

directFS
(POSIX filesystem namespace implemented with NVM Primitives)

NVM Primitives:
Open Interface

Basic
Block I/O
Primitives

Atomic I/O
Transaction
Primitives

Sparse-
address

Primitives

Clone/
Merge

Primitives

Cache
Eviction

Primitives

Memory
Transaction
Primitives

Virtual Partition Primitives
(partition creation, striping, and mirroring)

NVM or Flash Translation Layer

Topics – NoSQL Munich 2013

1.  What are we building ?

2.  Why are we building it?

3.  ioMemory SDK

4.  KV-API

5.  Direct FS

6.  Memory Access Semantics

7.  Where are we headed?

April 17, 2013 45

API Specs posted at
developer.fusionio.com

▸  Early-access to ioMemory SDK API specs and technical
documentation (limited enrollment during early-access phase)
http://developer.fusionio.com

▸ 

•  Write less code to create high-performing apps

•  Tap into performance not available with conventional I/O access to
SSDs

•  Reduce operating costs by decreasing RAM while increasing NVM

April 17, 2013 46

Direct-access to NVM is for developers whose
software retrieves and stores data.

Open Interfaces and Open Source
•  NVM Primitives: Open Interface

•  directFS: Open Source, POSIX Interface

•  NVM API Libraries: Open Source, Open Interface

•  INCITS SCSI (T10) active standards proposals:

▸  SBC-4 SPC-5 Atomic-Write
http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf

▸  SBC-4 SPC-5 Scattered writes, optionally atomic
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf

▸  SBC-4 SPC-5 Gathered reads, optionally atomic
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf

•  SNIA NVM-Programming TWG active member

47 April 17, 2013

Catalyst for top industry players to
Accelerate pursuit of NVM programming

April 17, 2013 48

…And Resonating through the
Industry

April 17, 2013 49

Comprehensive Customer Success

April 17, 2013 50 30+ case studies at http://fusionio.com/casestudies

F I N A N C I A L S M A N U F A C T U R I N G /
G O V E R N M E N T

W E B T E C H N O L O G Y R E T A I L

FASTER DATA
WAREHOUSE
QUERIES 40x QUERY

PROCESSING
THROUGHPUT 15x

The world’s leading Q&A site

®

FASTER
DATABASE
REPLICATION 30x FASTER DATA

ANALYSIS 5x FASTER
QUERIES 15x

f u s i o n i o . c o m | R E D E F I N E W H A T ’ S P O S S I B L E

T H A N K Y O U !

