
1 | © 2012 Velti @ NoSQL Roadshow Basel

Working with Velti
•  Our robust technology has been used by major broadcasters and media clients for over 7 years

•  Voting, Polling and Real-time Interactivity through second screen solutions

•  Incremental revenue generating services integrated with TV productions

•  Facilitate 10,000+ interactions per second as standard across our platforms

•  Platform and services have been audited by Deloitte and other compliant bodies

•  High capacity throughput for interactions, voting and transactions on a global scale

•  Partner of choice for BBC, ITV, Channel 5, SKY, MTV, Endemol, Fremantle and more:

2 | © 2012 Velti @ NoSQL Roadshow Basel

mVoy/mGage Products

Interactive messaging & multi-step marketing campaigns

Social Interactivity & Voting via Facebook, iPhone, Android & Web

High volume mobile messaging campaigns & mobile payments

Create, build, host & manage mobile commerce, mobile sites & apps

3 | © 2012 Velti @ NoSQL Roadshow Basel

Velti Technologies
•  Erlang
•  RIAK & leveldb
•  Redis
•  Ubuntu

•  Ruby on Rails
•  Java
•  Node.js
•  MongoDB
•  MySQL

4 | © 2012 Velti @ NoSQL Roadshow Basel

Battle Stories #2

•  Building a wallet

•  Optimizing your hardware stack

•  Building a robust queue

()

5 | © 2012 Velti @ NoSQL Roadshow Basel

Building a wallet
•  Fast

–  Over 1,000 credits / sec
–  Over 10,000 debits / sec (votes)

•  Scalable
–  Double hardware == Double performance

•  Robust / Recoverable
–  Transactions can not be lost
–  Wallet balances recoverable in the event of multi-server failure

•  Auditable
–  Complete transaction history

6 | © 2012 Velti @ NoSQL Roadshow Basel

Building a wallet - attempt #1
•  Use RIAK Only

–  Keep things simple
–  Less moving parts

•  A wallet per user containing:

–  Previous Balance
–  Transactions with unique IDs
–  Rolling Balance
–  Credits (facebook / itunes)
–  Debits (votes)

Key = dave@mig

Previous Balance = 2

1-abcd-1234 (+5) = 7
1-abcd-1235 (+2) = 9
1-abcd-1236 (-1) = 8

Purchase
 of Credits A Vote

7 | © 2012 Velti @ NoSQL Roadshow Basel

Building a wallet - attempt #1
•  RIAK = Eventual Consistency

–  In the event of siblings
–  Deterministic due to unique transactions ID’s
–  Merge the documents and store

 Key = dave@mig

Previous Balance = 2

1-abcd-1234 (+5) = 7
1-abcd-1235 (+2) = 9

Key = dave@mig

Previous Balance = 2

1-abcd-1234 (+5) = 7
1-abcd-1236 (-1) = 6

Key = dave@mig

Previous Balance = 2

1-abcd-1234 (+5) = 7
1-abcd-1235 (+2) = 9
1-abcd-1236 (-1) = 8

8 | © 2012 Velti @ NoSQL Roadshow Basel

Building a wallet - attempt #1

•  Compacting the wallet
–  Periodically
–  In event it grows to large

Key = dave@mig

Previous Balance = 2

1-abcd-1234 (+5) = 7
1-abcd-1235 (+2) = 9
1-abcd-1236 (-1) = 8

…
1-abcd-9999 (+1) = 78

Key = dave@mig

Previous Balance = 78

Compactor

9 | © 2012 Velti @ NoSQL Roadshow Basel

Building a wallet - attempt #1

•  Our experiences
–  Open to abuse
–  As wallet grows, performance decreases
–  Risk of sibling explosion
–  User can go over drawn

10 | © 2012 Velti @ NoSQL Roadshow Basel

Building a wallet - attempt #2

•  Introduce REDIS
–  REDIS stores the balance
–  RIAK stores individual transactions

Credit (2)

Key: dave@mig
Value: 78

Key: dave@mig
Value: 80

Debit (1) Key: dave@mig
Value:79

Key = dave@mig:1-abcd-1235
Value: +2

Key = dave@mig:1-abcd-1236
Value: -1

Key = dave@mig:1-abcd-1234
Value: +1

11 | © 2012 Velti @ NoSQL Roadshow Basel

Building a wallet - attempt #2

•  Keeping it all in sync
–  Periodically compare REDIS and RIAK

•  Disaster Recovery

–  Rebuild all balances in REDIS
–  Using transactions from RIAK

12 | © 2012 Velti @ NoSQL Roadshow Basel

Building a wallet - attempt #2

•  Our experiences
–  It works
–  Fast 10,000 votes / sec (6 x HP DL385)
–  Used wallet recovery (Data Center Power Fail)

•  The future
–  Possible use of levelDB backend for RIAK
–  Faster wallet recovery

13 | © 2012 Velti @ NoSQL Roadshow Basel

Hardware optimisation

Photograph and Logo © 2010 Time Out Group Ltd.

•  Observed ‘time outs’
 App ! RIAK DB

•  Developed sophisticated
balancing mechanisms to
code around them, but they
still occurred

•  Especially under load

14 | © 2012 Velti @ NoSQL Roadshow Basel

Nature of the problem
•  Delayed responses of up to 60 seconds!
•  Our live environment contains:

–  2 x 9 App & RIAK Nodes
–  HP DL385 G6
–  2 x AMD Opteron 2431 (6 cores)

•  We built a dedicated test environment to
get to the bottom of this:

–  3 x App & RIAK Nodes
–  2 x Intel Xeon (8 cores)

Looking for contention…

15 | © 2012 Velti @ NoSQL Roadshow Basel

Contention options
•  CPU

•  Disk IO

•  Network IO

Less than
60%

utilisation

?

?

• Got SSD (10x), Independent OME
• RIAK (SSD) / Logs/OS (HDD)

• RIAK I/O hungry
• Use second NICs/RIAK VLAN

16 | © 2012 Velti @ NoSQL Roadshow Basel

Memory contention / NUMA
•  Looking at the 60% again

–  Non-Uniform Memory Access (NUMA) is a computer memory design
used in Multiprocessing, where the memory access time depends on the
memory location relative to a processor. - Wikipedia

•  In the 1960s CPUs became faster then memory
•  Race for larger cache memory
•  Cache algorithms
•  Multi processors accessing the same memory leads to

contention and significant performance impact
•  Dedicate memory to processors/cores/threads
•  BUT, - most memory data is required by more then one

process. => ccNUMA
•  Linux threading allocation is challenged
•  Cache-coherence attracts significant overheads, especially

for processes in quick succession!

17 | © 2012 Velti @ NoSQL Roadshow Basel

Gain control! - NUMACTL
•  Processor affinity – Binds a particular process type to a specific

processor
•  Instruct memory usage to use different banks
•  For example: numactl --cpunodebind 1 –interleave all erl
•  Get it here: apt-get install numactl

•  => No timeouts
•  => 20%+ speed increase when running App & RIAK
•  => Full use of existing hardware

18 | © 2012 Velti @ NoSQL Roadshow Basel

Load testing
•  Our interactive voting platform required load testing
•  Requiring 10,000’s connections / second
•  Mixture of Http / Https
•  Session based requests

–  Login a user
–  Get a list of candidates
–  Get the balance
–  Vote for a candidate if credit available

19 | © 2012 Velti @ NoSQL Roadshow Basel

Load testing - lessons learned
WAN

FW

LAN

LB

Servs

ASA5520 limited at 3-4k new
connections per second
⇒ Replaced with ASA5585

(Spec 50k/s, Tested 20k/s)

HAProxy on 2xDL120
⇒ # of Linux procs 1 -> 4
⇒ Added conn. Throttle 4k/

server

6 x DL360 G6
⇒ Apache Cipher reduction
⇒ K/A consumed all threads

 -> reduced & disabled
⇒ Ulimit per proc 1k -> 65k

nn x AWS
⇒ Tsung SSL

SessionID bug

20 | © 2012 Velti @ NoSQL Roadshow Basel

Load testing Tools
•  ab (apache bench)

–  Easy to use
–  Lots of documentation
–  Hard to distribute (although we did find “bees with machine guns”)

•  https://github.com/newsapps/beeswithmachineguns)

–  We experienced Inconsistent results with our setup
–  Struggled to create the complex sessions we required

•  httperf
–  Easy to use
–  Lots of documentation
–  Hard to distribute (no master / slave setup)

21 | © 2012 Velti @ NoSQL Roadshow Basel

Load testing Tools
•  Write our own

–  Will do exactly what we want
–  Time

•  Tsung
–  Very configurable
–  Scalable
–  Easier to distribute
–  Already used in the department
–  Steep learning curve
–  Setting up a large cluster requires effort

22 | © 2012 Velti @ NoSQL Roadshow Basel

Tsung
•  What is it?

–  Tsung is an open-source multi-protocol distributed load testing tool
–  Written in erlang
–  Can support multiple protocols

•  HTTP / SOAP / XMPP / etc.

–  Support for sessions
–  Master slave setup for distributed load testing

23 | © 2012 Velti @ NoSQL Roadshow Basel

Distributed Tsung
•  Although Tsung provided us most of everything we needed
•  We still had to setup lots of instances manually
•  This was time consuming / error prone
•  We needed a tool to alleviate and automate this
•  So we built……

24 | © 2012 Velti @ NoSQL Roadshow Basel

Ion Storm
•  Tool to setup a Tsung cluster on multiple EC2 instances
•  With co-ordinated start stop functionality
•  Written in ruby, using the rightscale gem

–  http://rightaws.rubyforge.org/

•  Which uploads the results to S3 after each run

25 | © 2012 Velti @ NoSQL Roadshow Basel

Performance
•  From a cluster of 20 machines we achieved

–  20K HTTPS / Sec
–  50K HTTP / Sec
–  12K Session based request (mixture of api calls) / Sec

•  Be warned though
–  Can be expensive to run through EC2
–  Limited to 20 EC2 instances unless you speak to Amazon nicely
–  Have a look at spot instances

26 | © 2012 Velti @ NoSQL Roadshow Basel

Open Sourced!
•  Designed and built by two of our engineers

–  Ben Murphy

–  David Townsend

•  Why not try it out for yourselves?

git@github.com:mitadmin/ionstorm.git

27 | © 2012 Velti @ NoSQL Roadshow Basel

Battle Stories #2

•  Building a wallet

•  Optimizing your hardware stack

•  Building a robust queue – final version

28 | © 2012 Velti @ NoSQL Roadshow Basel

Building a Queue
•  Fast

–  > 1000 msg /sec

•  Scalable
–  Double the machines, double the capacity

•  Recoverable
–  In the event of a failure, all messages can be recovered

29 | © 2012 Velti @ NoSQL Roadshow Basel

Design
•  Queues stored in memory (volatile)

–  Hand rolled our own using ETS (erlang)
–  We needed to add complex behavior such as scheduling
–  Overflow protection by paging to disk

•  Copy of the data and state stored in a shared data store
–  RIAK ticked all the boxes
–  Scalable
–  Robust
–  Fast

30 | © 2012 Velti @ NoSQL Roadshow Basel

Previously
•  We explored RIAK to store and recover the queues using:

–  Index’s (levelDB)
•  Latencies too unpredictable
•  Performance was less than half of bitcask

–  Key Filtering (bitcask)
•  Write overhead too expensive as we had to update the key not the value (delete and insert)
•  Real world performance under load was not great

–  Map Reduce across all key (bitcask)
•  Great for small data sets
•  Forget it as your data set get’s into the 10 of millions

31 | © 2012 Velti @ NoSQL Roadshow Basel

New Approach
•  With a little help from the Basho guys we came up with a new

approach

•  Predictable keys + Snapshots (bitcask)
–  Simple
–  Smallish impact on performance
–  It worked
–  And it scales

32 | © 2012 Velti @ NoSQL Roadshow Basel

Our Architecture

Client_Node

Q Erlang
Node

Riak Node 1

Q Erlang
Node

Riak Node 2

Q Erlang
Node

Riak Node 3

Router Node Operator Node

•  Each Node has it’s own Queue
•  Each Node lives on it’s own physical machine
•  RIAK runs as a cluster on all of the nodes

Basic SMS Gateway topology

33 | © 2012 Velti @ NoSQL Roadshow Basel

Predictable Key
•  Key: “ node : date : restart_count : counter “

–  node: the name of the originating node for the request e.g “client_node”
–  date: e.g. “2012-01-01”
–  restart_count: number of node restarts e.g. “2”
–  counter: number of message since last node restart or date change e.g. “3000”

•  Value: <message : current_node >

–  message: the original request e.g. “send sms”
–  current_node: the current node the message is located e.g. “router_node”

34 | © 2012 Velti @ NoSQL Roadshow Basel

Snapshot
•  Every 1000 messages
•  Take a snapshot of the counter

–  Key: “ client_node : 2012-01-01 : 1 : snapshot ”
–  Value: 5000

•  This is then used to help determine an upper limit for the recovery
–  Which will be discussed in more detail in a couple of slides

35 | © 2012 Velti @ NoSQL Roadshow Basel

Queue – incoming node

RIAK
Cluster

Local
Memory
Queue

Predictable Key
Generator Request

Receiver
<message>

Generate Key

< key > = “node : date : restart_count : counter “

Persist Push

Request

<key> <message : current_node>

Sender

Pop

<key> <message : current_node>

36 | © 2012 Velti @ NoSQL Roadshow Basel

Queue – intermediate node

RIAK
Cluster

Local
Memory
Queue

Request
Receiver

Persist Push

Request

<key> <message : current_node>

Sender
Pop

<key> <message : current_node>

<key> <message : previous_node>

37 | © 2012 Velti @ NoSQL Roadshow Basel

Queue – outgoing node

RIAK
Cluster

Local
Memory
Queue

Request
Receiver

Persist

Push Request

<key> <message : current_node>

Sender

Pop
<key> <message : current_node>

<key> <message : previous_node>

<key> <message : current_node>

delete

38 | © 2012 Velti @ NoSQL Roadshow Basel

Recovery
•  Identify node that needs recovery e.g. “client_node”
•  Take the current date e.g. “2012-01-01”
•  Request from RIAK the current restart_count e.g. “1”
•  Use the snapshot to get the last current count recorded e.g. “3000”

–  Key: “ client_node : 2012-01-01 : 1 : snapshot ”
–  Value: 3000

•  Create a temporary recovery node
•  Rebuild by walking the keys from:

–  from the value: 1
–  to the current count + (2 x snapshot interval): 5000

•  Once complete create the original node & discard the recovery node

39 | © 2012 Velti @ NoSQL Roadshow Basel

Testing
•  Benchmarking with 3 x HP365’s (AMD)

–  Production has 18 x HP360’s

•  Sustained 2000 req/sec (8 x RIAK ops per request)
–  Linear scaling in testing

•  Recovered 5 million messages in < 1 hour after crashing a node
–  Whilst processing 500 req/sec sustained

40 | © 2012 Velti @ NoSQL Roadshow Basel

Production
•  Currently live and used for our SMS Gateway
•  No noticeable drop in performance when under peak loads
•  Plan to be used in our other products
•  Hopefully our final soloution

41 | © 2012 Velti @ NoSQL Roadshow Basel

Battle Stories #2

•  Building a wallet

•  Optimizing your hardware stack

•  Building a robust queue

42 | © 2012 Velti @ NoSQL Roadshow Basel

David Dawson
+44 7900 005 759
ddawson@velti.com

Marcus Kern
+44 7932 661 527
mkern@velti.com

If you’d like to work with or for Velti please contact the Velti Team:

Questions?

Thank You

