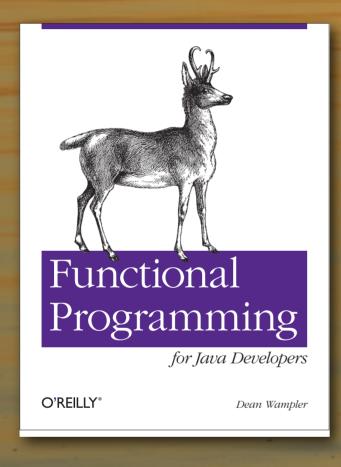
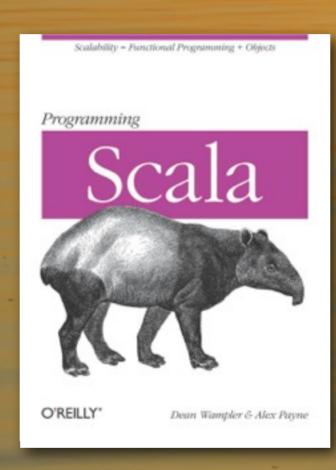


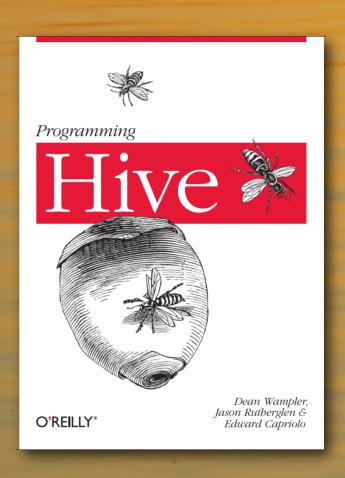
Copyright © Dean Wampler, 2011-2013, All Rights Reserved. Photos can only be used with permission. Otherwise, the content is free to use.

Photo: San Francisco Bay, just south of the airport in Burlingame, before sunrise.

Who am 1?







Copyright © 2011-2013, Dean Wampler, All Rights Reserved

Thursday, June 6, 13

My books...

Photo: San Francisco Bay, Burlingame, around sunrise.

Hadoop hype cycle: But what gives us actual value?

3

Copyright © 2011-2013, Dean Wampler, All Rights Reserve

Thursday, June 6, 13

This talk reflects my experiences working on "Big Data" projects, mostly using Hadoop, with many clients.

People sometimes jump on this bandwagon to avoid "being left behind" or to boost their career. Sometimes, it doesn't make sense for their actual needs. Big Data itself doesn't do you any good. It's the information we extract that's important, so let's see how different technologies address specific problems.

Photo: Photo: San Francisco Bay, Burlingame, around sunrise.

What Is Big Data?

DevOps Borat @DEVOPS_BORAT

Big Data is any thing which is crash Excel.

Expand

8 Jan

DevOps Borat @DEVOPS_BORAT

Small Data is when is fit in RAM. Big Data is when is crash because is not fit in RAM.

6 Feb

Expand

4

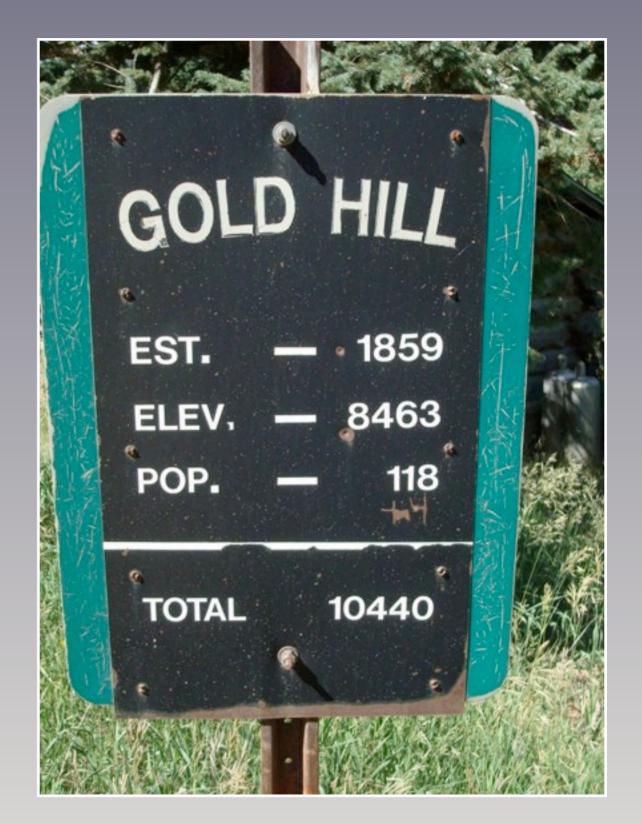
Copyright © 2011-2013, Dean Wampler, All Rights Reserve

Thursday, June 6, 13

Photo: Photo: San Francisco Bay, Burlingame, around sunrise.

Big Data

Data so big that traditional solutions are too slow, too small, or too expensive to use.



Hat tip: Bob Korbus

Į

Thursday, June 6, 13

It's a buzz word, but generally associated with the problem of data sets too big to manage with traditional SQL databases. A parallel development has been the NoSQL movement that is good at handling semistructured data, scaling, etc.

Three trends to organizer our thinking...

Photo: Gull on a pier near Fort Mason, SF

Data Size 1

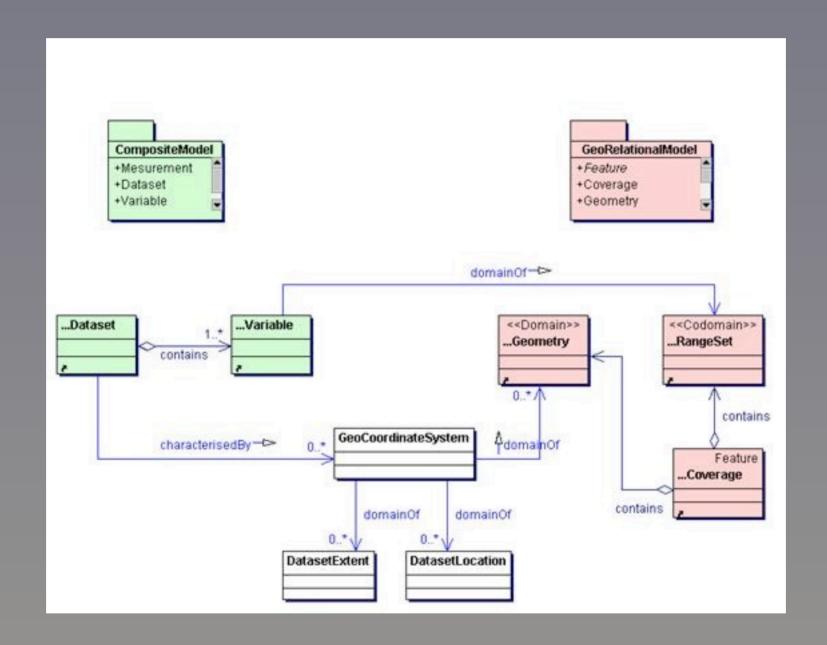
7

Copyright © 2011-2013, Dean Wampler, All Rights Reserve

Thursday, June 6, 13

Data volumes are obviously growing... rapidly. Facebook now has over 600PB (Petabytes) of data in Hadoop clusters!

Formal Schemas +



8

Thursday, June 6, 13

There is less emphasis on "formal" schemas and domain models, i.e., both relational models of data and OO models, because data schemas and sources change rapidly, and we need to integrate so many disparate sources of data. So, using relatively-agnostic software, e.g., collections of things where the software is more agnostic about the structure of the data and the domain, tends to be faster to develop, test, and deploy. Put another way, we find it more useful to build somewhat agnostic applications and drive their behavior through data...

Data-Driven Programs 1

Thursday, June 6, 13

This is the 2nd generation "Stanley", the most successful self-driving car ever built (by a Google-Stanford) team. Machine learning is growing in importance. Here, generic algorithms and data structures are trained to represent the "world" using data, rather than encoding a model of the world in the software itself. It's another example of generic algorithms that produce the desired behavior by being application agnostic and data driven, rather than hard-coding a model of the world. (In practice, however, a balance is struck between completely agnostic apps and some engineering towards for the specific problem, as you might expect...)

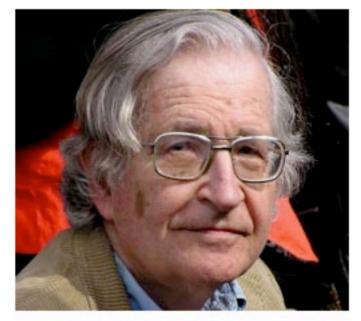
Norvig vs. Chomsky and the Fight for the Future of AI

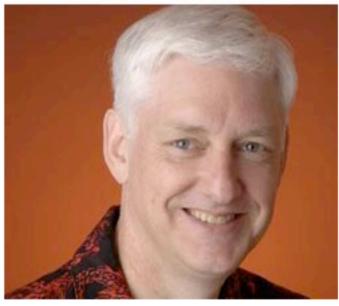
KEVIN GOLD

Probabilistic Models vs. Formal Grammars

tor.com/blogs/...

When the Director of Research for Google compares one of the most highly regarded linguists of all time to Bill O'Reilly, you know it is on. Recently, Peter Norvig, Google's Director of Research and co-author of the most popular artificial intelligence textbook in the world, wrote a webpage extensively criticizing Noam Chomsky, arguably the most influential linguist in the world. Their disagreement points to a revolution in artificial intelligence that, like many revolutions, threatens to destroy as much as it improves. Chomsky, one of the old guard, wishes for an elegant theory of intelligence and language that looks past human fallibility to try to see simple structure underneath. Norvig, meanwhile, represents the new philosophy: truth by statistics,





Chomsky photo by Duncan Rawlinson and his Online Photography School. Norvig photo by Peter Norvig

10

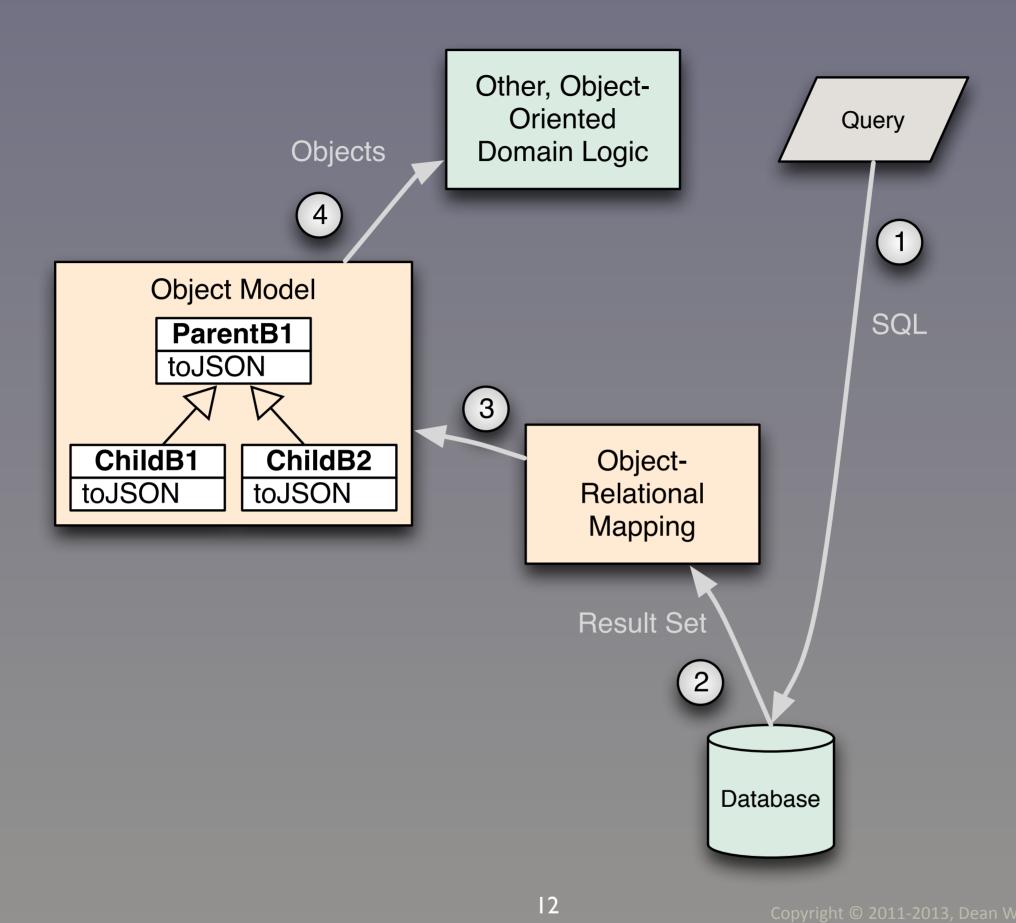
Copyright © 2011-2013, Dean Wampler, All Rights Reserve

Thursday, June 6, 13

An interesting manifestation of the last two points is the public argument between Noam Chomsky and Peter Norvig on the nature of language. Chomsky long ago proposed a hierarchical model of formal language grammars. Peter Norvig is a proponent of probabilistic models of language. Indeed all successful automated language processing systems are probabilistic.

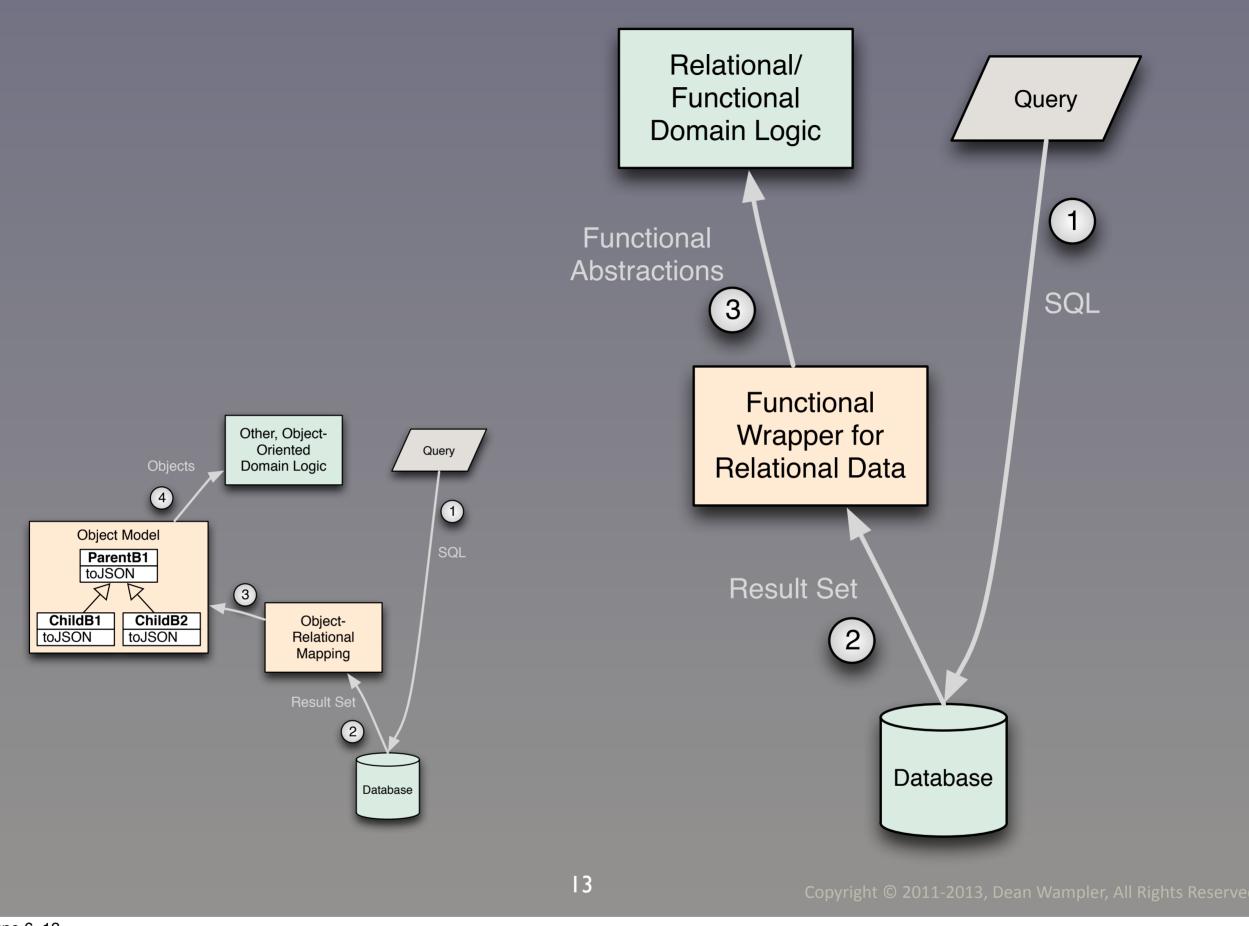
http://www.tor.com/blogs/2011/06/norvig-vs-chomsky-and-the-fight-for-the-future-of-ai

What should software architectures look like for these kinds of systems? Photo: Light on the Boardwalk and Coit Tower.



Traditionally, we've kept a rich, in-memory domain model requiring an ORM to convert persistent data into the model. This is resource overhead and complexity we can't afford in big data systems. Rather, we should treat the result set as it is, a particular kind of collection, do the minimal transformation required to exploit our collections libraries and classes representing some domain concepts (e.g., Address, StockOption, etc.), then write functional code to implement business logic (or drive emergent behavior with machine learning algorithms...)

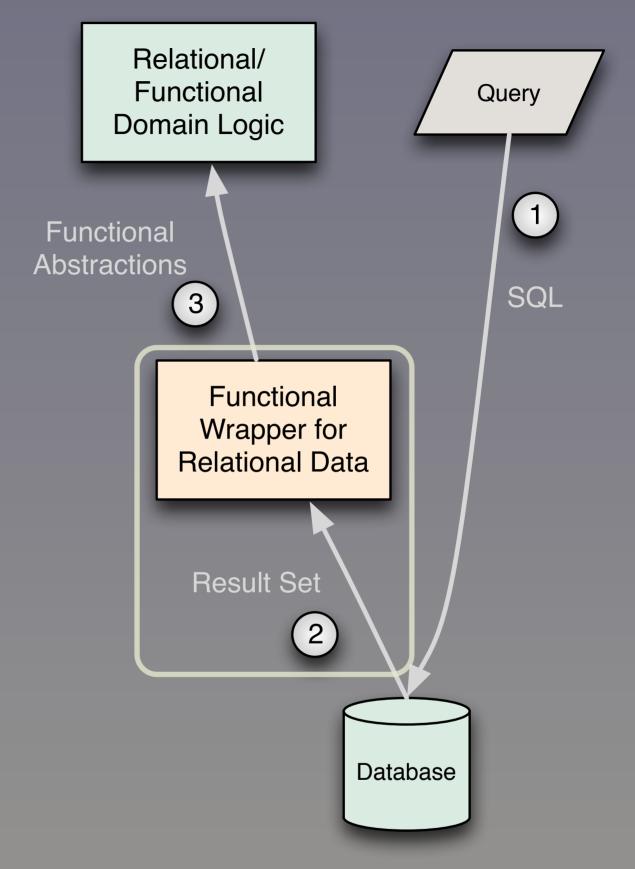
The toJSON methods are there because we often convert these object graphs back into fundamental structures, such as the maps and arrays of JSON so we can send them to the browser!



Thursday, June 6, 13

But the traditional systems are a poor fit for this new world: 1) they add too much overhead in computation (the ORM layer, etc.) and memory (to store the objects). Most of what we do with data is mathematical transformation, so we're far more productive (and runtime efficient) if we embrace fundamental data structures used throughout (lists, sets, maps, trees) and build rich transformations into those libraries, transformations that are composable to implement business logic.

- Focus on:
 - Lists
 - MapsSetsTrees

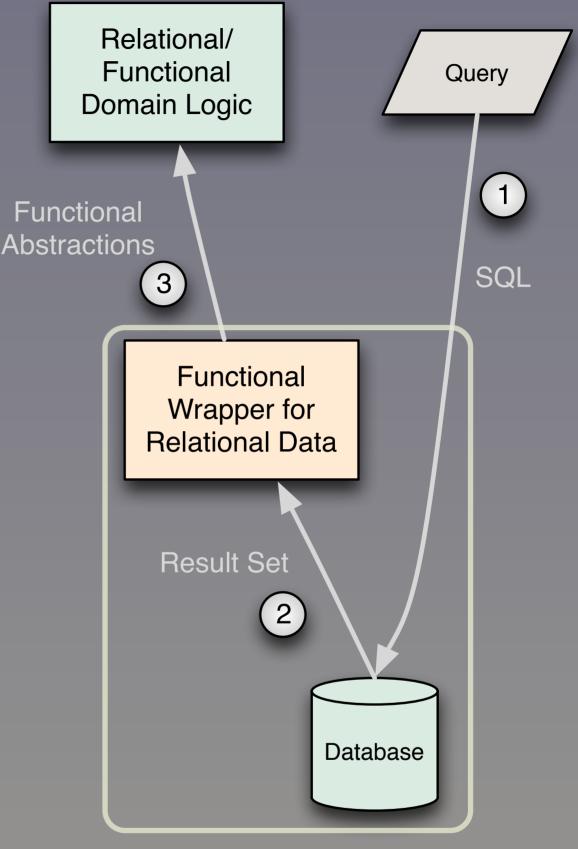


Thursday, June 6, 13

But the traditional systems are a poor fit for this new world: 1) they add too much overhead in computation (the ORM layer, etc.) and memory (to store the objects). Most of what we do with data is mathematical transformation, so we're far more productive (and runtime efficient) if we embrace fundamental data structures used throughout (lists, sets, maps, trees) and build rich transformations into those libraries, transformations that are composable to implement business logic.

- NoSQL?
 - Cassandra,HBase
 - Riak, Redis
 - MongoDB
 - Neo4J

• • •

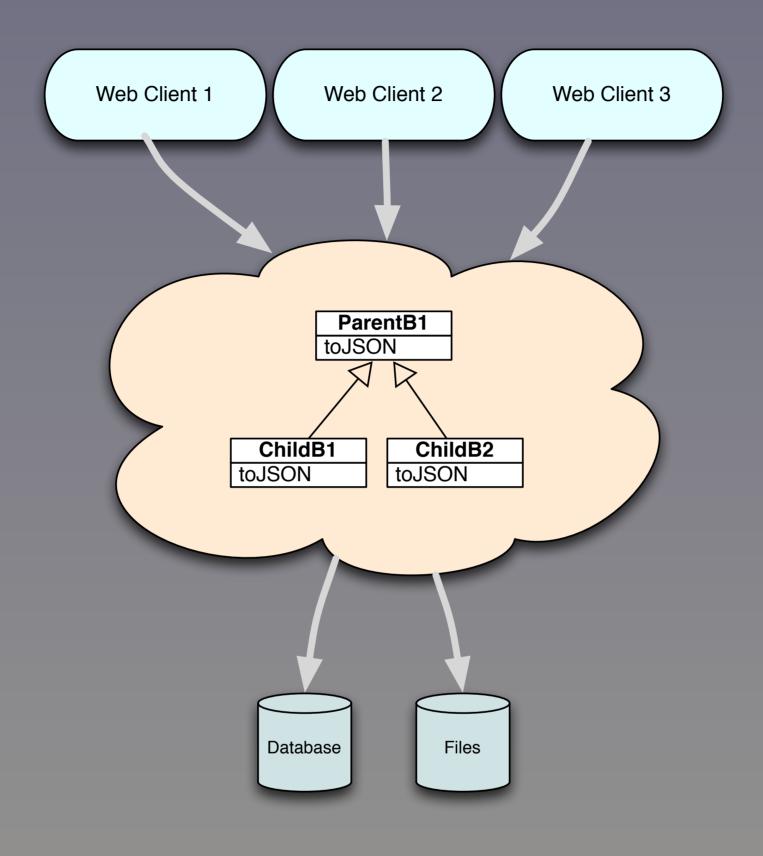


15

Copyright © 2011-2013, Dean Wampler, All Rights Reserv

Thursday, June 6, 13

NoSQL databases fit this model well, with focused abstractions for their data model.

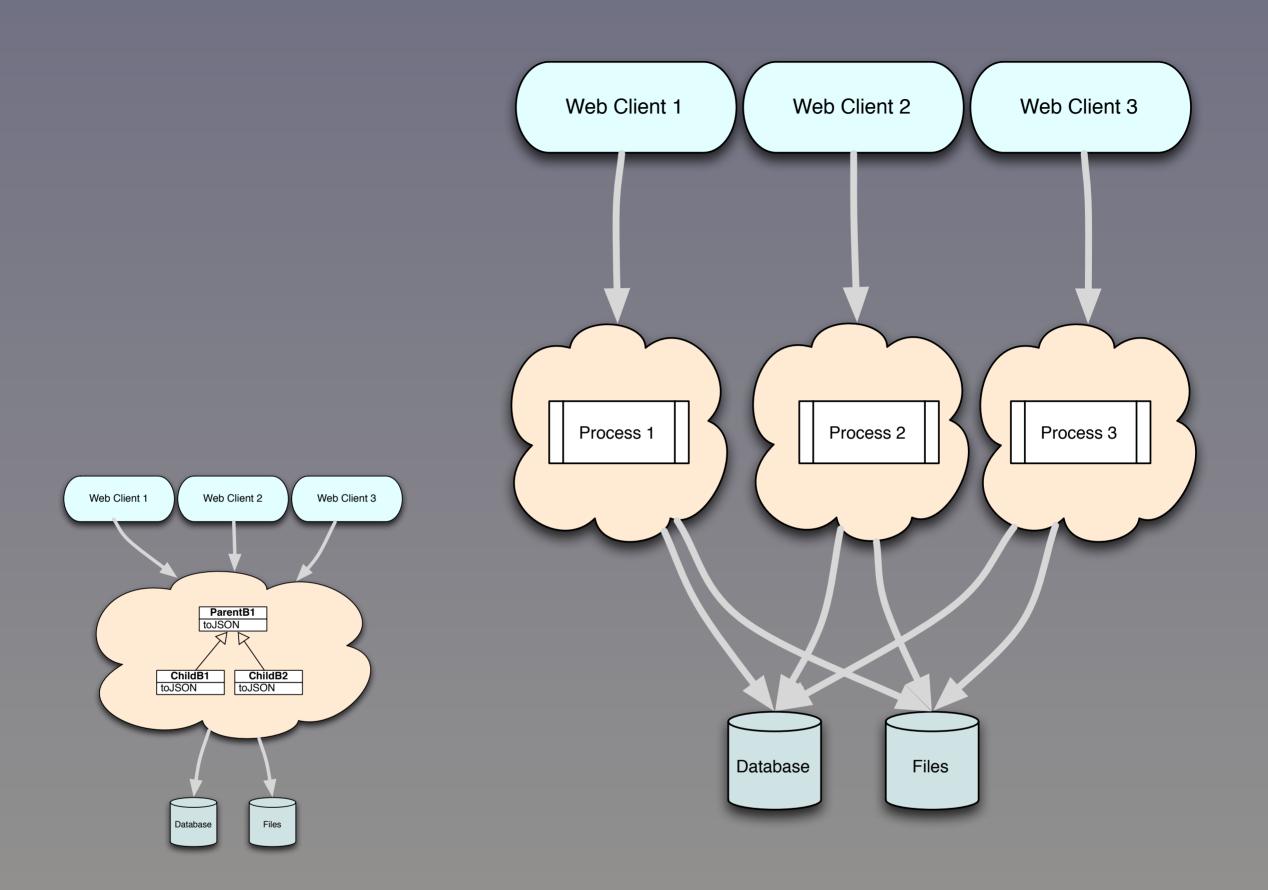


16

Convright © 2011-2013 Dean Wamnler All Rights Reserve

Thursday, June 6, 13

In a broader view, object models tend to push us towards centralized, complex systems that don't decompose well and stifle reuse and optimal deployment scenarios. FP code makes it easier to write smaller, focused services that we compose and deploy as appropriate.

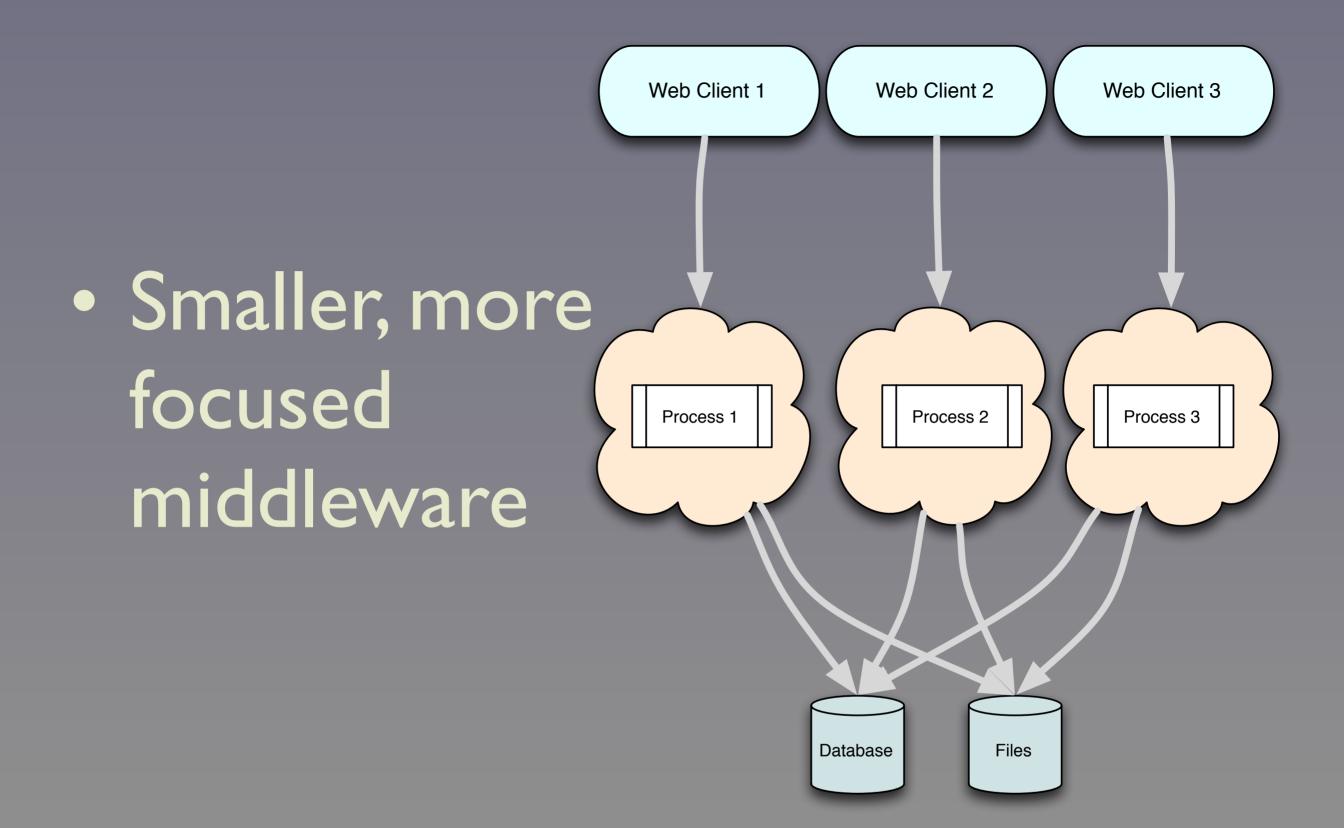


17

onvright © 2011-2013 Dean Wamnler All Rights Reserve

In a broader view, object models tend to push us towards centralized, complex systems that don't decompose well and stifle reuse and optimal deployment scenarios. FP code makes it easier to write smaller, focused services that we compose and deploy as appropriate. Each "ProcessN" could be a parallel copy of another process, for horizontal, "shared-nothing" scalability, or some of these processes could be other services...

Smaller, focused services scale better, especially horizontally. They also don't encapsulate more business logic than is required, and this (informal) architecture is also suitable for scaling ML and related algorithms.



Copyright © 2011-2013, Dean Wampler, All Rights Reserve

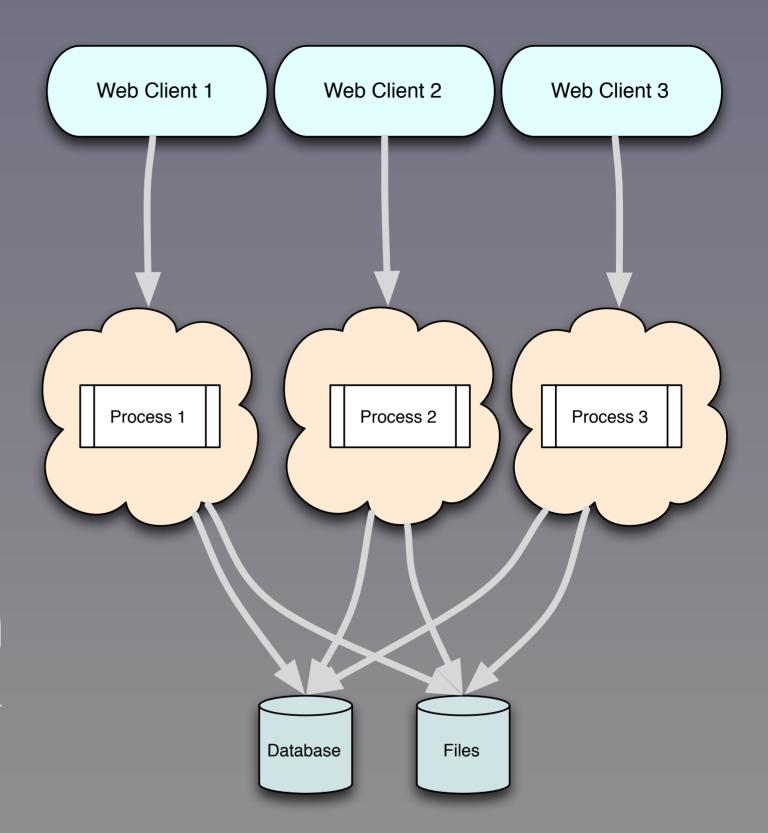
Thursday, June 6, 13

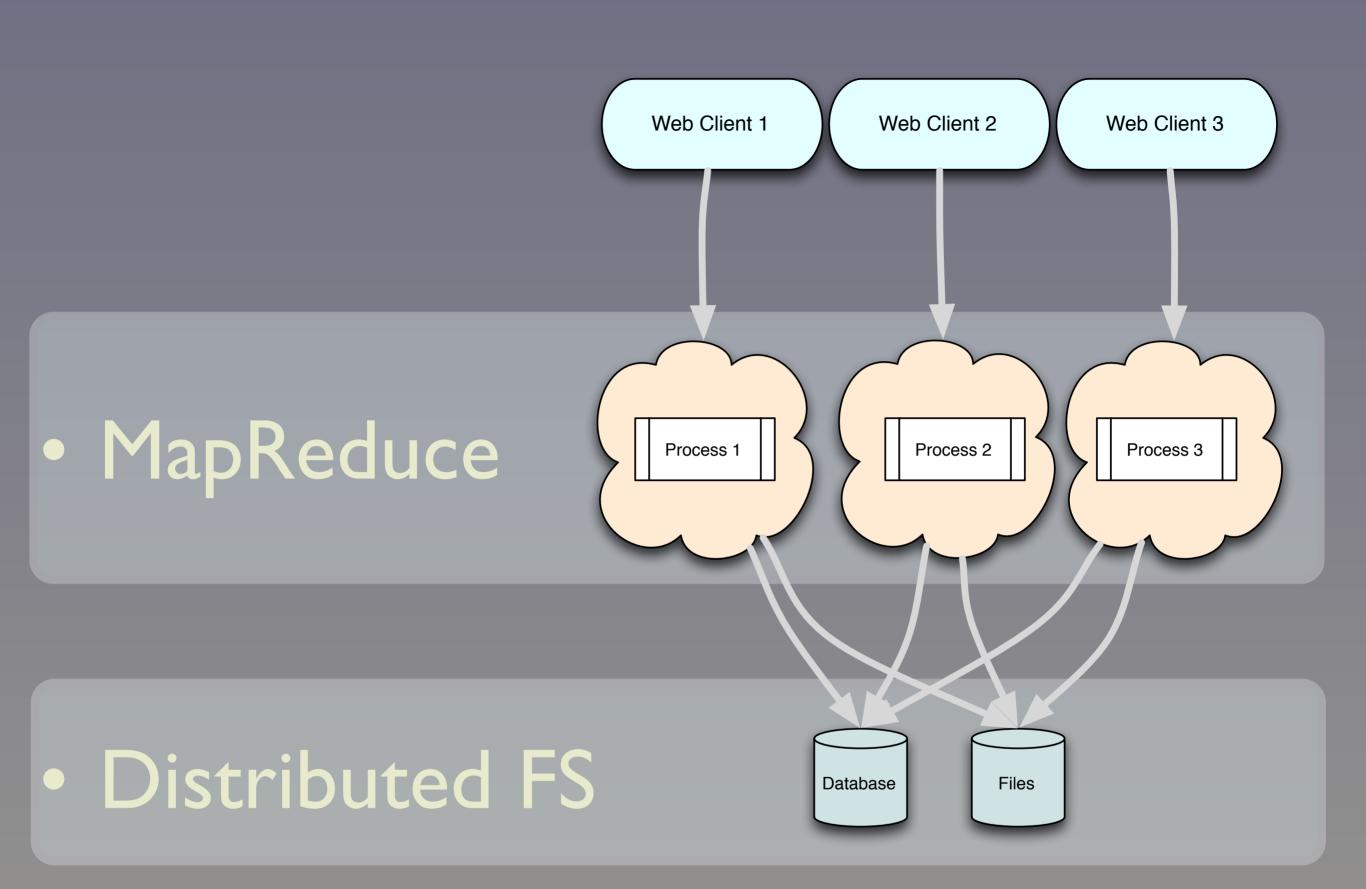
An important "software engineering" benefit is the way it promotes smaller, more focused middleware, avoiding bloat that is hard to evolve.

• Data Size 🕇

• Formal Schema

Data-DrivenPrograms 1

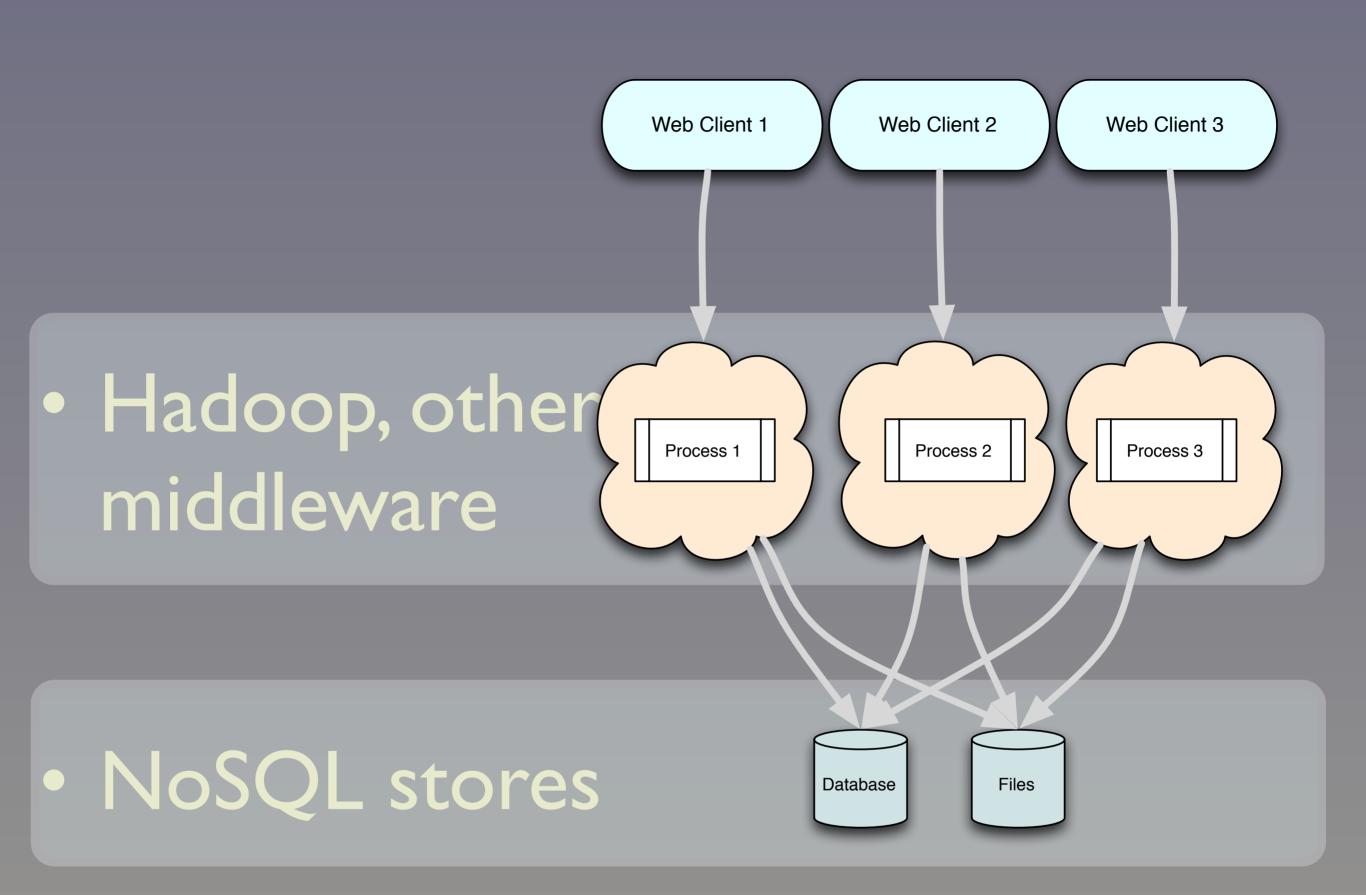




Copyright © 2011-2013, Dean Wampler, All Rights Reserve

Thursday, June 6, 13

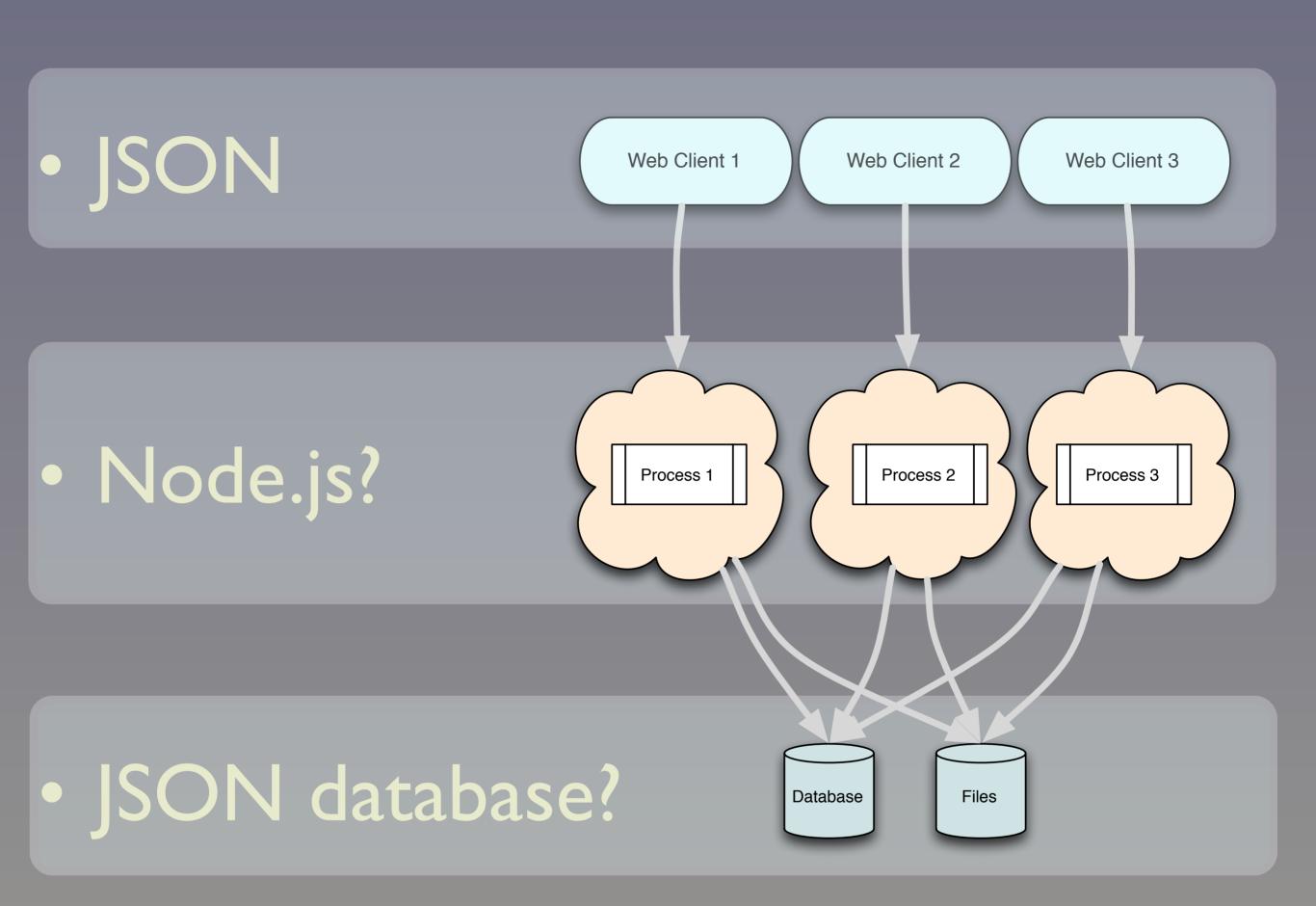
And MapReduce + a distributed file system, like Hadoop's MapReduce and HDFS, fit this model.



Convright © 2011-2013 Dean Wamnler All Rights Reserve

Thursday, June 6, 13

MapReduce and a "bare", distributed file system aren't the right model for many systems (as we'll discuss). A similar model uses a NoSQL store and ad-hoc middleware. In this case, more logic is in the storage layer vs. more limited capabilities in a distributed file system.



Copyright © 2011-2013, Dean Wampler, All Rights Reserve

Thursday, June 6, 13

One interesting incarnation of this is JavaScript through the full stack, with JSON as the RPC format, stored directly (more or less) in a database like Mongo, CouchBase, and RethinkDB. Node gives you JS in the mid-tier, and JSON is obviously a browser tool.

Inursday, June 6, 13

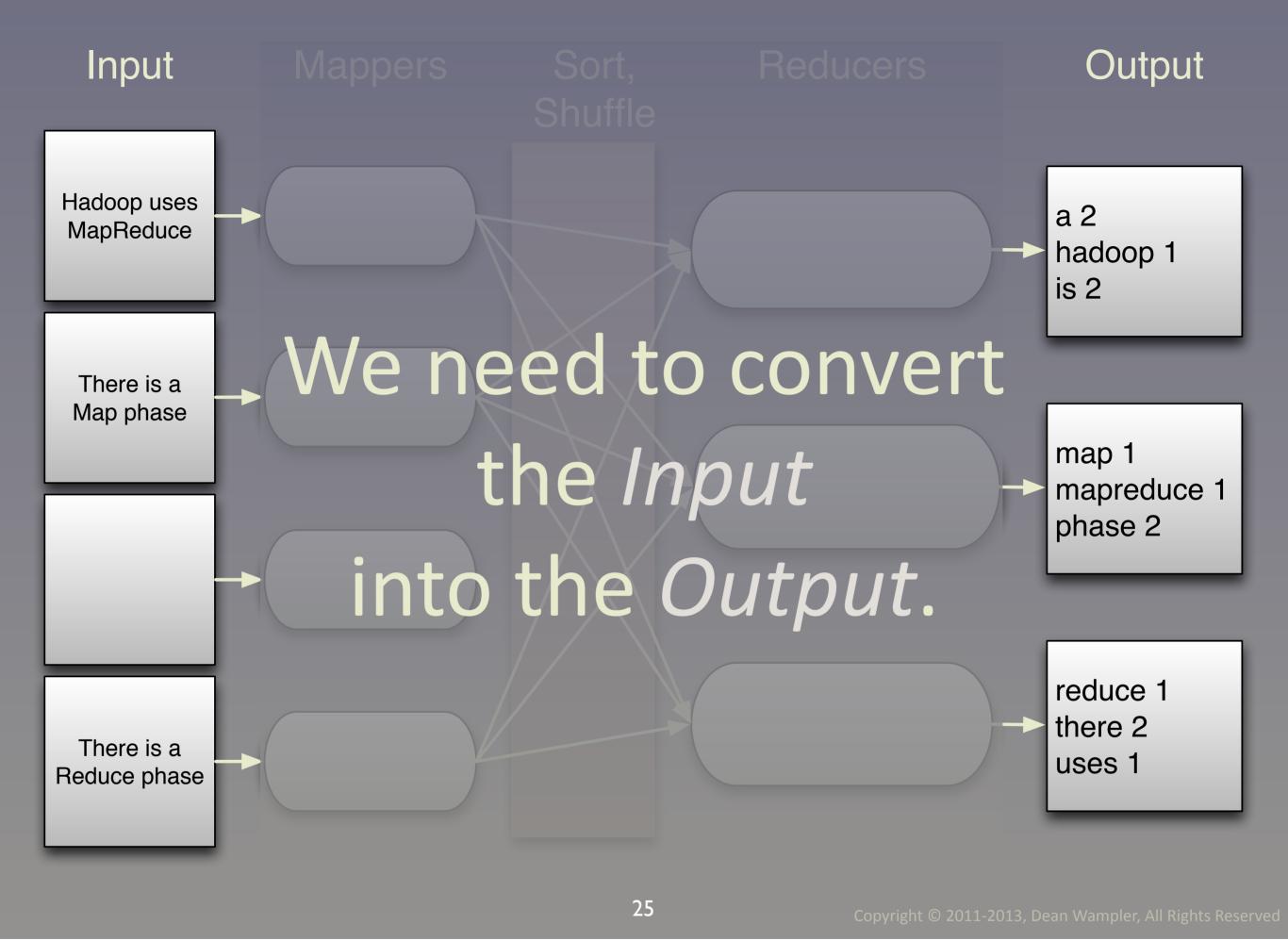
Let's be clear about what MR actually is.

Photo: Near the Maritime Museum

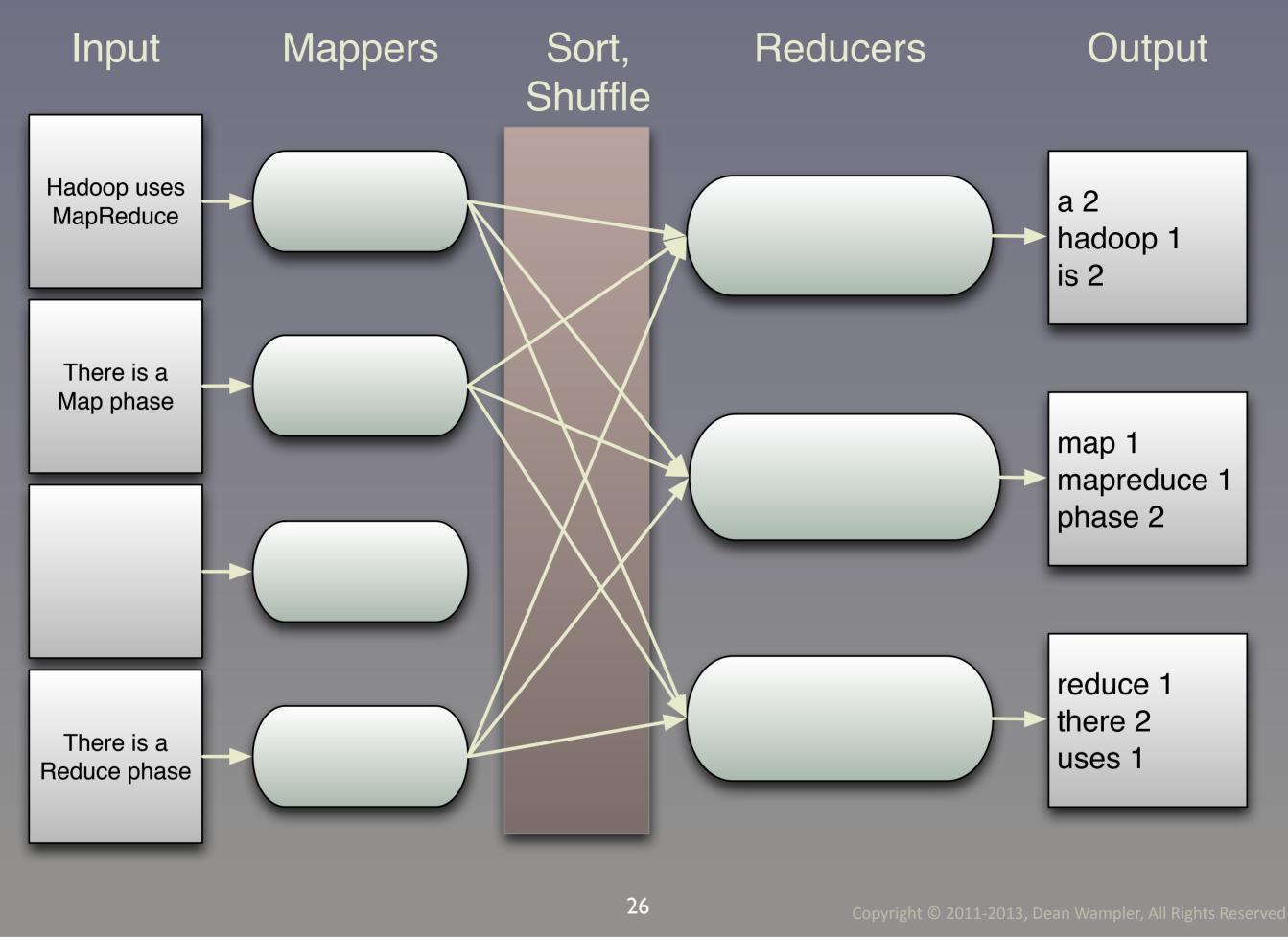
MapReduce in Hadoop

Let's look at a *MapReduce* algorithm: *WordCount*.

(The Hello World of big data...)



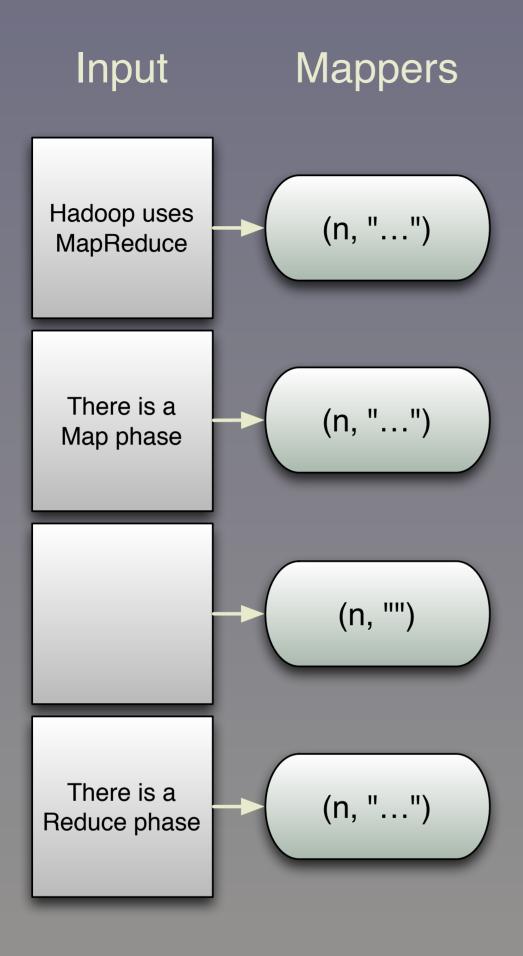
Four input documents, one left empty, the others with small phrases (for simplicity...). The word count output is on the right (we'll see why there are three output "documents"). We need to get from the input on the left-hand side to the output on the right-hand side.



Here is a schematic view of the steps in Hadoop MapReduce. Each Input file is read by a single Mapper process (default: can be many-to-many, as we'll see later).

The Mappers emit key-value pairs that will be sorted, then partitioned and "shuffled" to the reducers, where each Reducer will get all instances of a given key (for 1 or more values).

Each Reducer generates the final key-value pairs and writes them to one or more files (based on the size of the output).

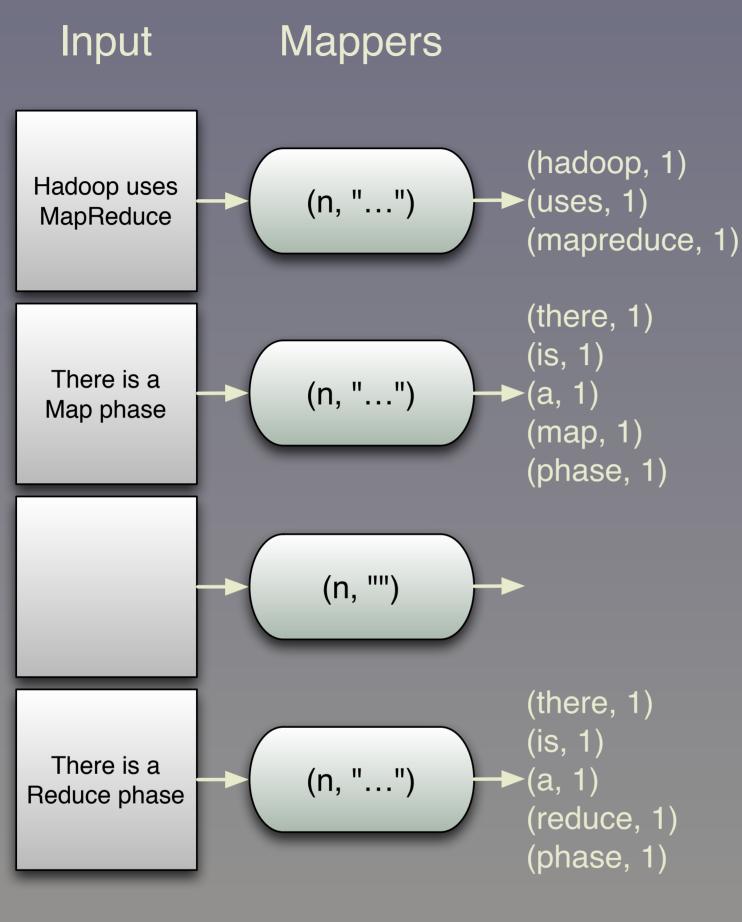


Copyright © 2011-2013, Dean Wampler, All Rights Reserve

Thursday, June 6, 13

Each document gets a mapper. All data is organized into key-value pairs; each line will be a value and the offset position into the file will be the key, which we don't care about. I'm showing each document's contents in a box and 1 mapper task (JVM process) per document. Large documents might get split to several mapper tasks.

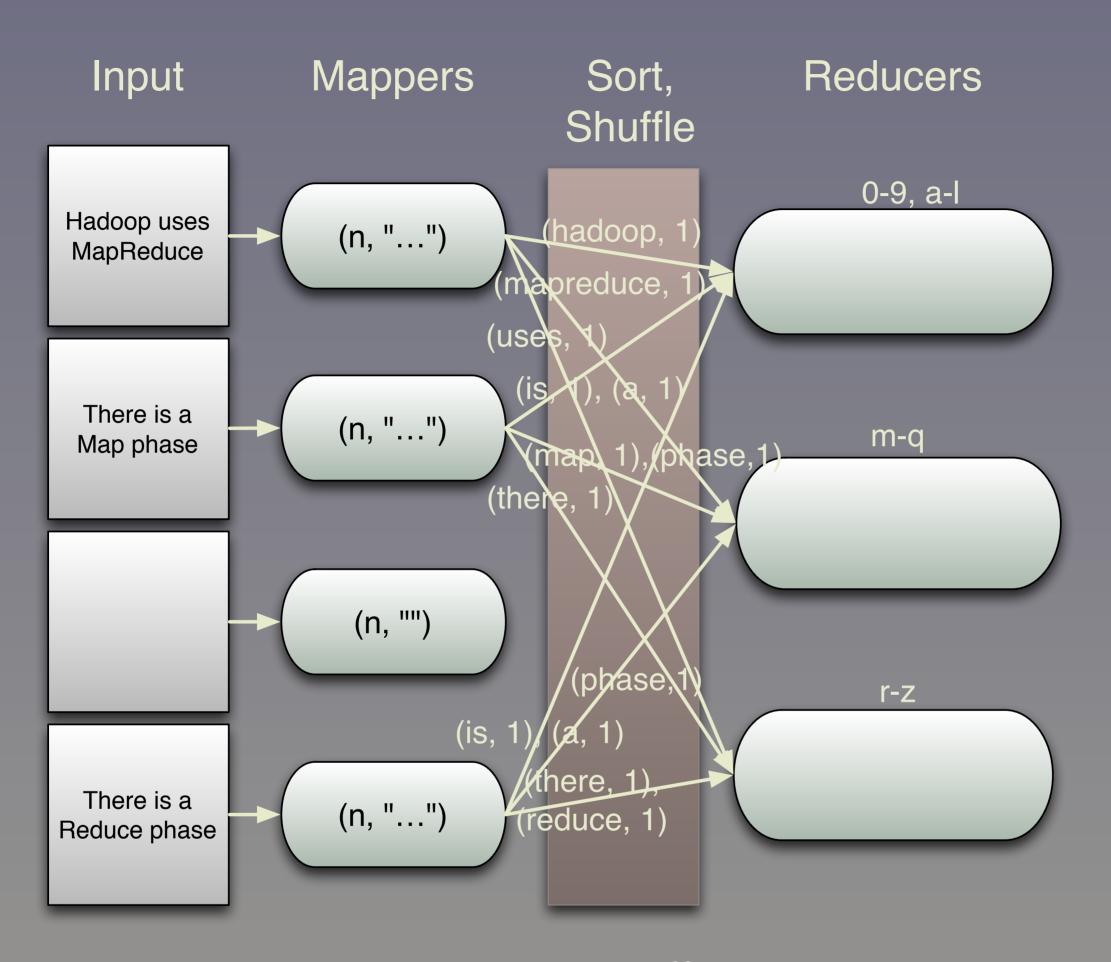
The mappers tokenize each line, one at a time, converting all words to lower case and counting them...



Copyright © 2011-2013, Dean Wampler, All Rights Reserve

Thursday, June 6, 13

The mappers emit key-value pairs, where each key is one of the words, and the value is the count. In the most naive (but also most memory efficient) implementation, each mapper simply emits (word, 1) each time "word" is seen. However, this is IO inefficient! Note that the mapper for the empty doc. emits no pairs, as you would expect.

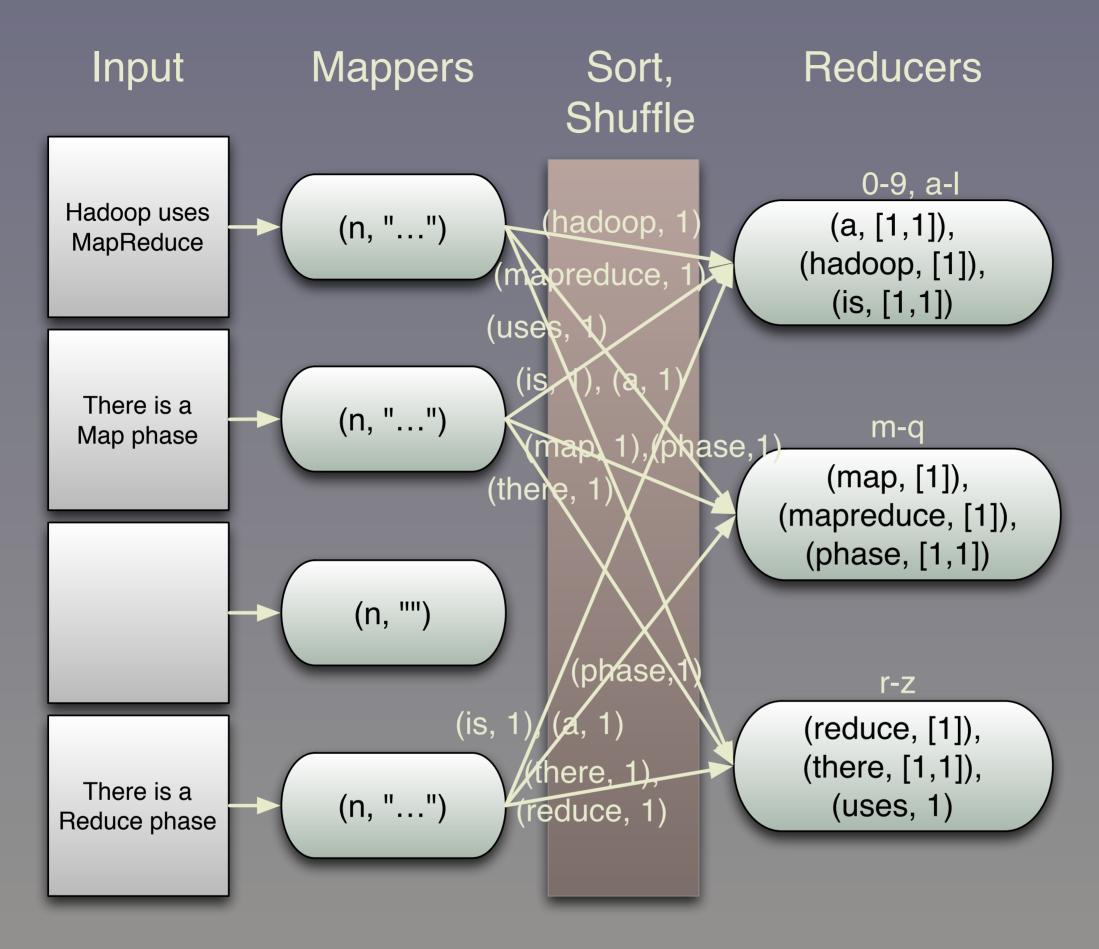


Convright © 2011-2013, Dean Wampler, All Rights Reserve

Thursday, June 6, 13

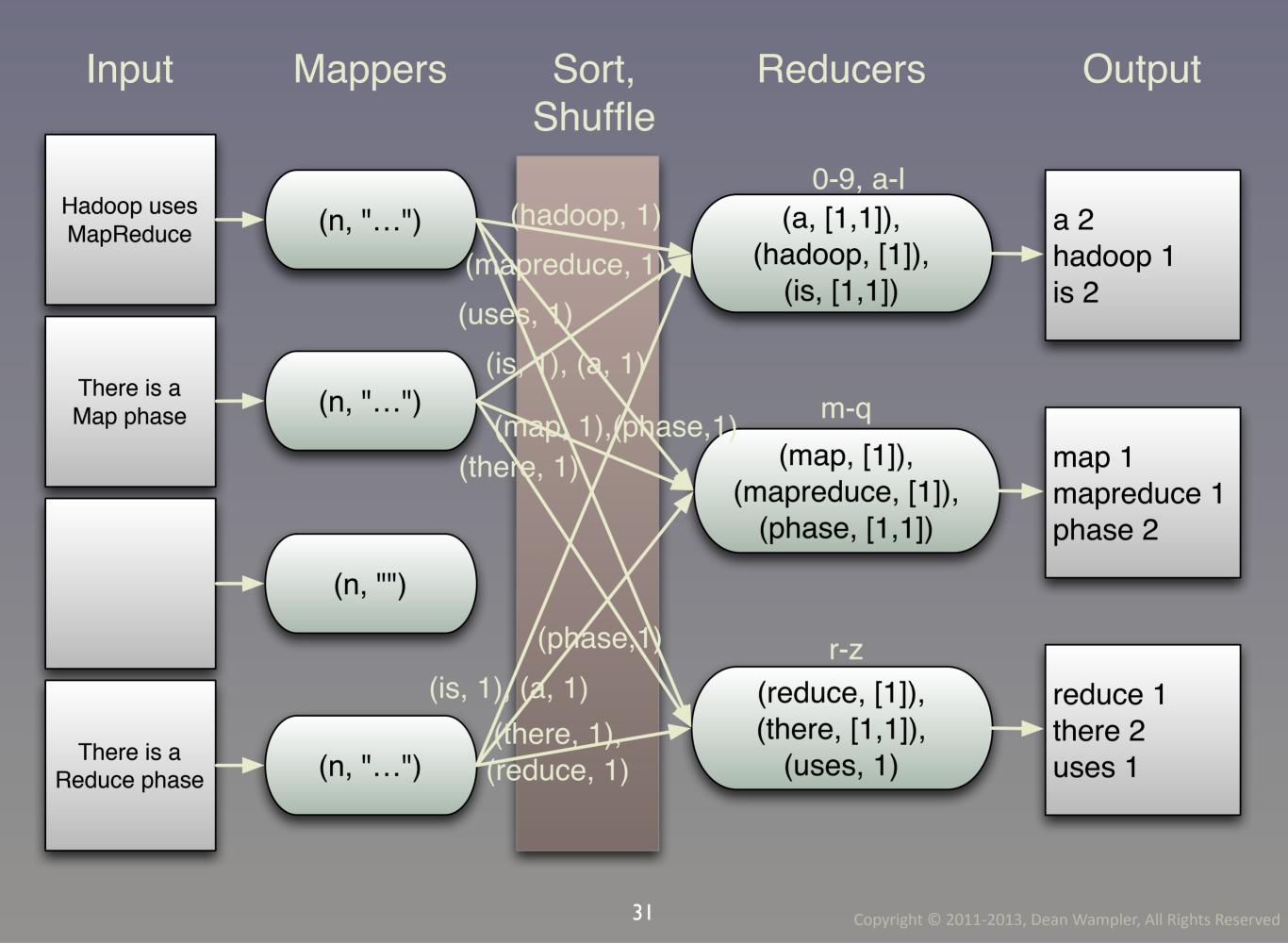
The mappers themselves don't decide to which reducer each pair should be sent. Rather, the job setup configures what to do and the Hadoop runtime enforces it during the Sort/Shuffle phase, where the key-value pairs in each mapper are sorted by key (that is locally, not globally) and then the pairs are routed to the correct reducer, on the current machine or other machines.

Note how we partitioned the reducers, by first letter of the keys. (By default, MR just hashes the keys and distributes them modulo # of reducers.)

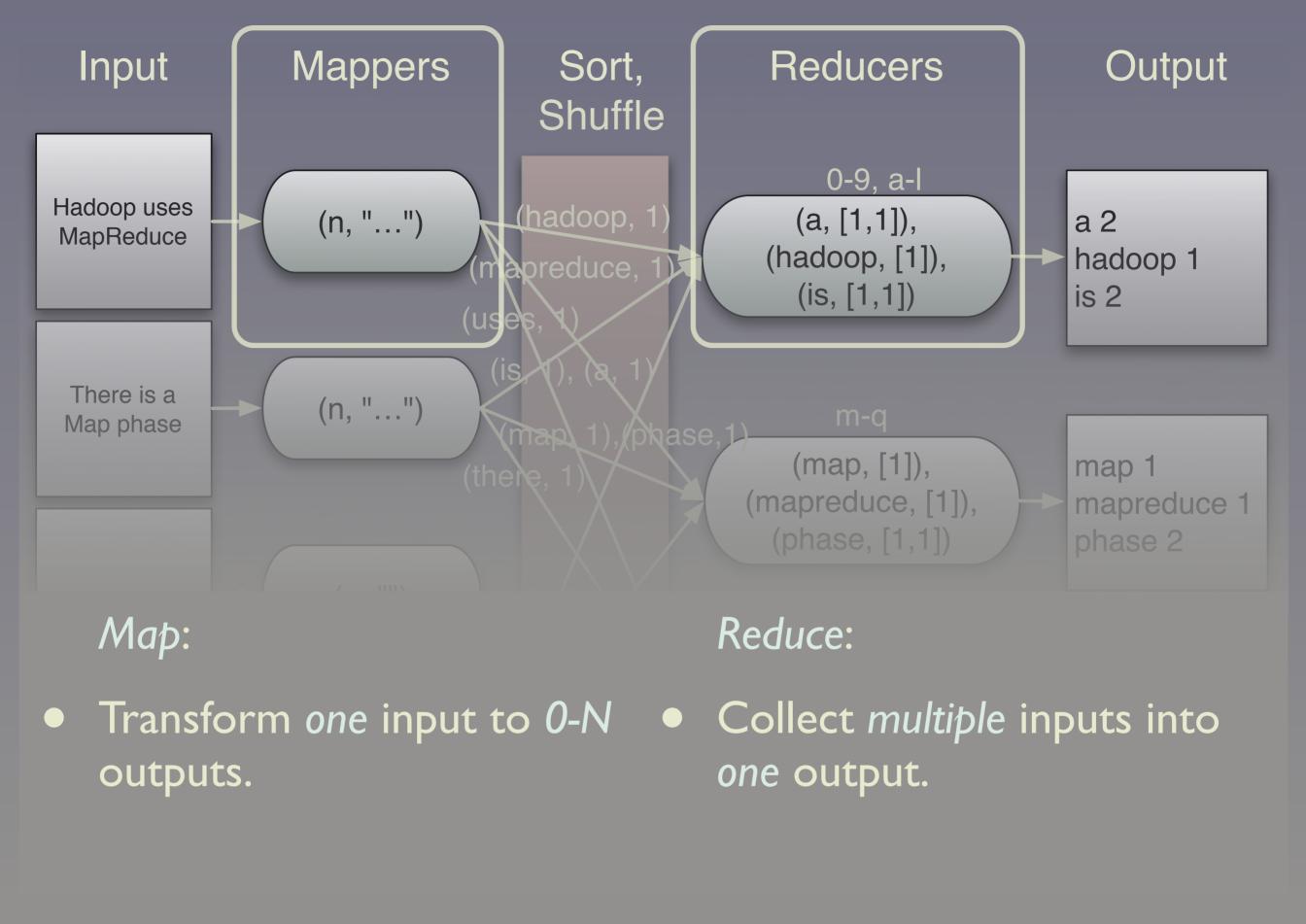


The reducers are passed each key (word) and a collection of all the values for that key (the individual counts emitted by the mapper tasks). The MR framework creates these collections

for us.



The final view of the WordCount process flow. The reducer just sums the counts and writes the output. The output files contain one line for each key (the word) and value (the count), assuming we're using text output. The choice of delimiter between key and value is up to you, but tab is common.



Copyright © 2011-2013, Dean Wampler, All Rights Reserve

Thursday, June 6, 13

To recap, a "map" transforms one input to one output, but this is generalized in MapReduce to be one to 0-N. The output key-value pairs are distributed to reducers. The "reduce" collects together multiple inputs with the same key into

Arguably, Hadoop is our best, generic* tool for scaling Big Data horizontally (at least today).

33

Copyright © 2011-2013, Dean Wampler, All Rights Reserve

Thursday, June 6, 13

As I'll argue it's definitely more first-generation than "perfect". By generic, I mean beyond the more focused goals of a database, SQL or NoSQL, in the sense that it provides a very open-ended compute model and primitive storage, on which you can build a database, which is exactly what HBase is! However, HBase doesn't use MapReduce, just HDFS with its own compute engine. The asterisk is because MR is very general-purpose, but actually somewhat difficult, inflexible, and inefficient for many algorithms.

By design, Hadoop is great for batch mode data crunching.

Not so great for eventstream processing.

By design, Hadoop is great for batch mode data crunching. Not so great for transactions.

MapReduce is very course-grained.

1-Map and 1-Reduce phase...

For *Hadoop* in particularly, the *Java API* is hard to use.

Use Cases

Thursday, June 6, 13
Let's look at some use cases to understand the strengths and weaknesses of Hadoop-oriented solutions vs. NoSQL-oriented solutions.

Photo: Transamerica Building

TL;DR

- Hadoop
- Very flexible compute model
- "Table" scans
- Batch mode

- NoSQL
- Focused on a particular data model
- Transactional
- Event driven

TL;DR

But Hadoop MapReduce is often used with a NoSQL store.

40

Copyright © 2011-2013, Dean Wampler, All Rights Reserve

Thursday, June 6, 13

Just to be clear that there isn't a clear divide between these technologies, of course. For example, it's not uncommon to integrate MR jobs with Cassandra, HBase, MongoDB, and even relational tables.

Improving information search and retrieval, usually through some means of indexing. See the two search talks today by Ryan Tabora and Drew Raines.

Lucene with Solr or ElasticSearch

A specific solution for search.

For very large data sets...

NetApp project: Use Solr to store indices to data in HDFS and HBase.

43

Copyright © 2011-2013, Dean Wampler, All Rights Reserve

Thursday, June 6, 13

Publicly described project for NetApp done by Think Big Analytics. That project could now be done with Datastax integrated support for Cassandra and Solr.

Thursday, June 6, 13

Data warehouse systems hit scalability limits and cost/TB concerns at large scale...

Problem:

Your current data warehouse can only store 6-months of data without a \$1M upgrade.

Traditional DW

- Pros
- Mature
- Rich SQL,
 analytics
- Mid-size Data

- Cons
- Expensive -\$/TB
- Scalability limits

Solution?

Replace the data warehouse with NoSQL?

SQL is very important for data warehouse applications.

48

Copyright © 2011-2013, Dean Wampler, All Rights Reserve

Thursday, June 6, 13

NoSQL does give you the more cost-effective storage, but SQL is very important for most DW applications, so your "NoSQL" store would need a powerful query tool to support common DW scenarios. However, DW experts usually won't tolerate anything that isn't SQL.

Solution?

Replace the data warehouse with Hadoop?

- Traditional DW
- + Mature
- + Rich SQL, analytics
- Scalability
- \$\$/TB

- Hadoop
- Less mature
- + Improving SQL
- + Scalable!
- +Low \$/TB

Hadoop has become a popular *data warehouse* supplement/replacement.

51

Copyright © 2011-2013, Dean Wampler, All Rights Reserve

Thursday, June 6, 13

Many of my projects have offloaded an overburdened or expensive traditional data warehouse to Hadoop. Sometimes a wholesale replacement, but more often a supplemental strategy, at least for a transitional period of some duration.

Thursday, June 6, 13

Let's discuss the SQL options now, as I consider them very important. Otherwise, the majority of Data Analysts and casual SQL users would not find Hadoop very useful.

Use SQL when you can!

- Hive: SQL on top of MapReduce.
- Shark: Hive ported to Spark.
- Impala: HiveQL with new, faster back end.
- Lingual: SQL on Cascading.

53

Convright © 2011-2013 Dean Wampler All Rights Reserve

Thursday, June 6, 13

See http://hive.apache.org/ or my book for Hive, http://shark.cs.berkeley.edu/ for shark, and http://www.cloudera.com/content/cloudera/en/products/cloudera-enterprise-core/cloudera-enterprise-RTQ.html for Impala. Impala is very new. It doesn't yet support all Hive features.

Word Count in Hive SQL!

```
CREATE TABLE docs (line STRING);
LOAD DATA INPATH '/path/to/docs'
INTO TABLE docs;
```

```
CREATE TABLE word_counts AS
SELECT word, count(1) AS count FROM
(SELECT explode(split(line, '\W+'))
  AS word FROM docs) w
GROUP BY word
ORDER BY word;
```

Works for Hive, Shark, and Impala

54

Copyright © 2011-2013, Dean Wampler, All Rights Reserve

Thursday, June 6, 13

This is how you could implement word count in Hive. We're using some Hive built-in functions for tokenizing words in each "line", the one "column" in the docs table, etc., etc.

Hive

- SQL dialect.
- Uses MapReduce back end.
 - So annoying latency.
- First SQL on Hadoop.
- Developed by Facebook.

Shark

- HiveQL front end.
- Spark back end.
- Provides better performance.
- Developed by Berkeley AMP.

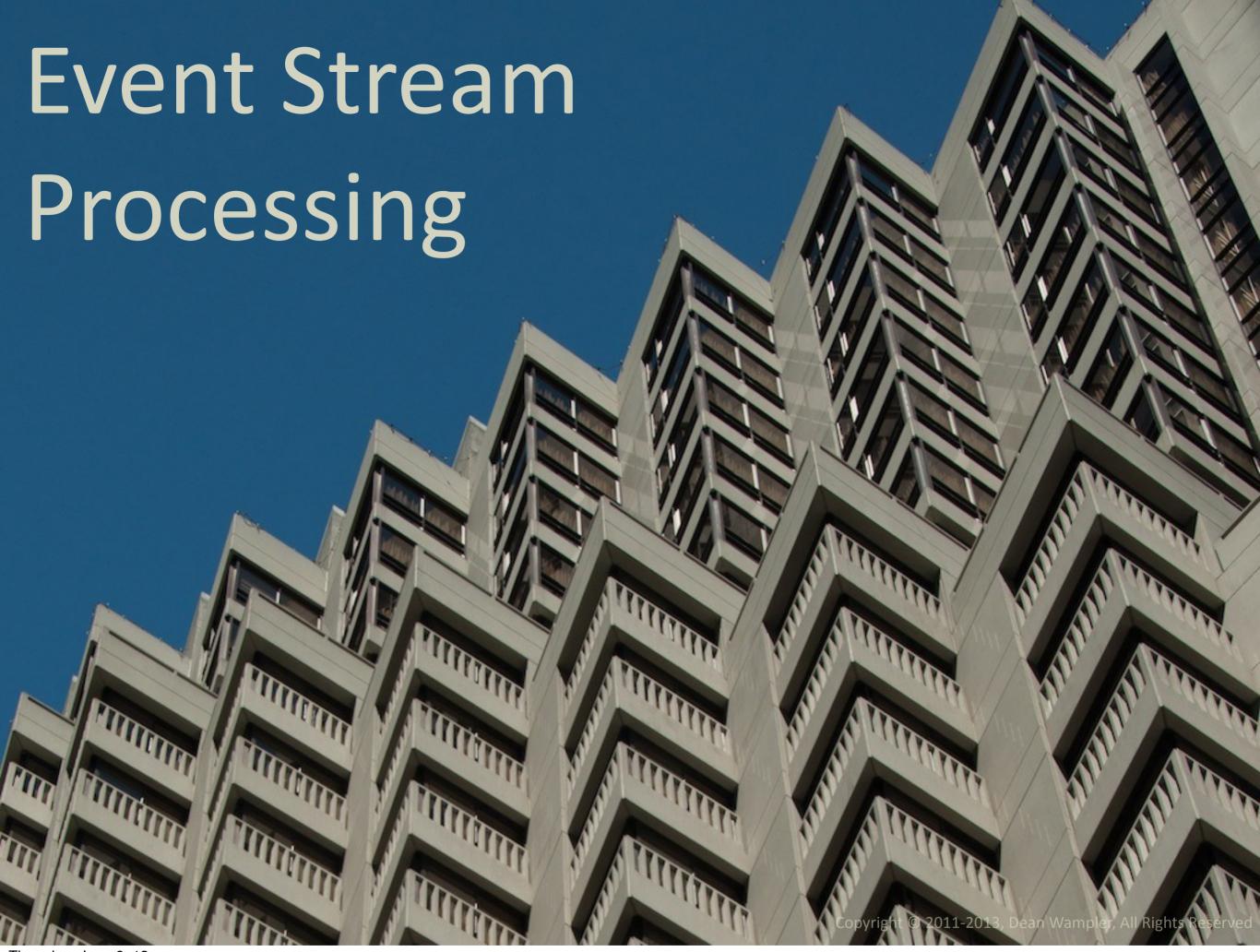
Impala

- HiveQL front end.
- C++ and Java back end.
- Provides up to 100x performance improvement!
- Developed by Cloudera.

Lingual

- ANSI SQL front end.
- Cascading back end.
 - Same strengths/weaknesses for runtime performance as Hive.

58



Thursday, June 6, 13

Data warehouse systems hit scalability limits and cost/TB concerns at large scale...

Recall, Hadoop is *great* for *batch mode* data crunching.

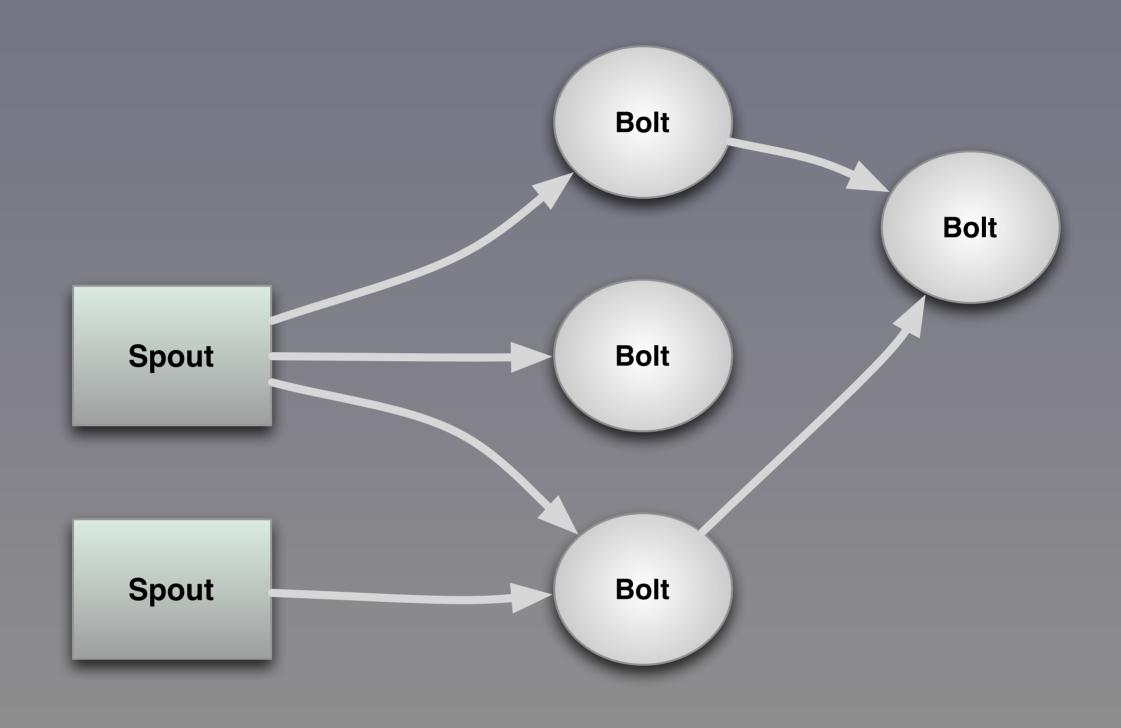
Not so great for eventstream processing.

Thursday, June 6, 13

Nathan Marz's Storm system for scalable, distributed event stream processing. A complement to Hadoop, as he describes in detail in his book "Big Data" (Manning).

Photo: Top of the AON Building in Chicago after a Storm passed through.

Storm implements reliable, distributed event processing.



63

Copyright © 2011-2013, Dean Wampler, All Rights Reserve

Thursday, June 6, 13

In Storm terminology, Spouts are data sources and bolts are the event processors. There are facilities to support reliable message handling, various sources encapsulated in Sprouts and various targets of output. Distributed processing is baked in from the start.

- Hadoop
- + Cheap
- + Scalable
- + Commercial
 Support
- Batch mode

- Storm
- Less mature
- + Robust
- Commercial Support
- +"Real time"

Photo: Actually, this is in Chicago, looking out my condo window.

SQL or NoSQL Databases?

Databases are designed for fast, transactional updates.

So, consider a database for event processing.

66

Convright © 2011-2013 Dean Wamnler All Rights Reserve

Thursday, June 6, 13

Use a SQL database unless you need the scale and looser schema of a NoSQL database!

Thursday, June 6, 13

ML includes recommendation engines (e.g., the way Netflix recommends movies to you or Amazon recommends products), classification (e.g., SPAM classifiers, character and image recognition), and clustering. Other specialized examples include text mining and other forms of natural language processing (NLP).

- Recommendations: Netflix movies, Amazon products, ...
- Classification: SPAM filters, character recognition, ...
- Clustering: Find groups in social networks, ...

Hadoop has a generalpurpose compute model.

Arbitrary *ML algorithms* can be implemented using *MapReduce*.

69

Copyright © 2011-2013, Dean Wampler, All Rights Reserve

Thursday, June 6, 13

Having a general-purpose computation framework (as opposed to storage model) is useful for implementing arbitrary algorithms, without having to worry about distribution and scalability boilerplate, like you might for an ad-hoc middleware layer.

However, recall that MapReduce is very course-grained...

Pattern

A new toolkit for writing models in SAS, etc., then run them on Cascading.

Spark

An alternative to MapReduce with more flexible and composable abstractions.

Spark

Originally designed for *Machine Learning*.

However you *train* the models...

Train with Hadoop, etc.

Serve requests with

NoSQL store.

74

Convright © 2011-2013 Dean Wampler All Rights Reserve

Thursday, June 6, 13

A common model is to use Hadoop to train models (e.g., recommendation engine) over very large data set, then store the model in an event-processing system (NoSQL, Storm) to serve requests in real time. (Problem: how do you update the model to reflect new inputs? Rerun training periodically or use an "online" algorithm – out of scope here!)

How should you represent associations in social networks, e.g., friends on Facebook, followers on Twitter, ...

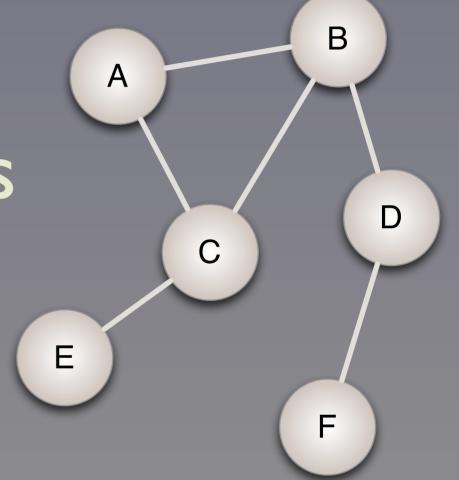
Google's Page Rank

Google invented MapReduce,

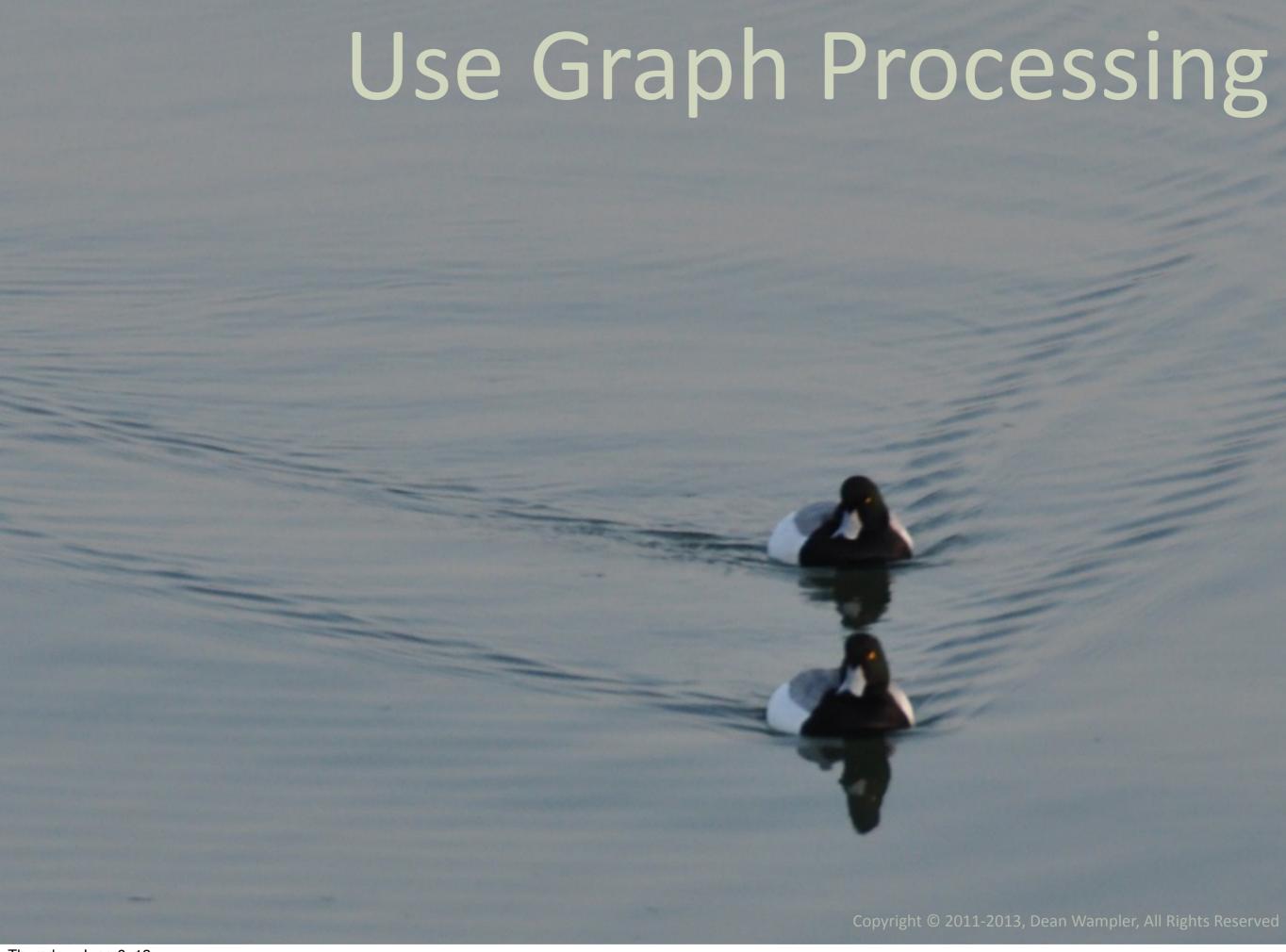
... but MapReduce is not ideal for Page Rank and other graph algorithms.

Why not MapReduce?

- I MR job for each iteration that updates all n nodes/edges.
- Graph saved to disk after each iteration.



•



A good summary presentation: http://www.slideshare.net/shatteredNirvana/pregel-a-system-for-largescale-graph-processing

Photo: San Francisco Bay

Google's Pregel

- Pregel: New graph framework for Page Rank.
 - Bulk, Synchronous Parallel (BSP).
 - Graphs are first-class citizens.
 - Efficiently processes updates...

79

Copyright © 2011-2013, Dean Wampler, All Rights Reserve

Thursday, June 6, 13

Pregel is the name of the river that runs through the city of Königsberg, Prussia (now called Kaliningrad, Ukraine). 7 bridges crossed the river in the city (including to 5 to 2 islands between river branches). Leonhard Euler invented graph theory when we analyzed the question of whether or not you can cross all 7 bridges without retracing your steps (you can't).

Open-source Alternatives

- Apache Giraph.
- Apache Hama.
- Aurelius Titan.

All are somewhat immature.

80

Thursday, June 6, 13

http://incubator.apache.org/giraph/

http://hama.apache.org/

http://thinkaurelius.github.com/titan/

None is very mature nor has extensive commercial support.

Open-source Alternatives

- Neo4J.
 - Mature, single machine graphical networks.

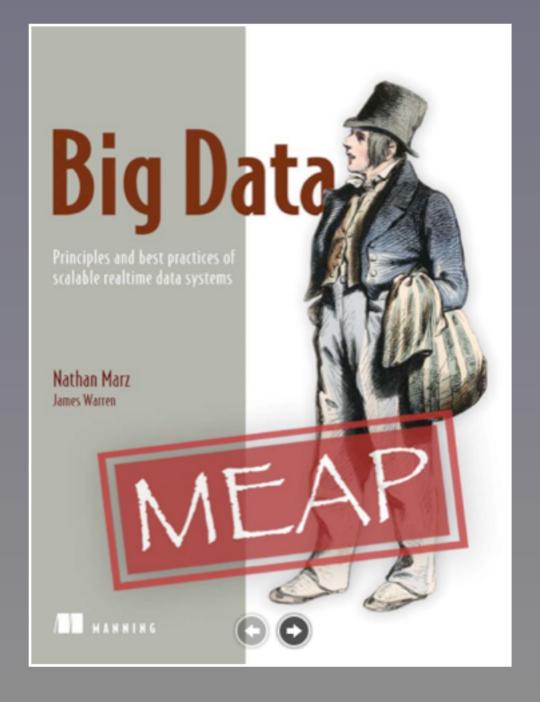
Neo4J

- Not the same kind of distributed system like Pregel, but
 - More mature.
 - Commercially supported.
 - Maybe you don't need distributed?

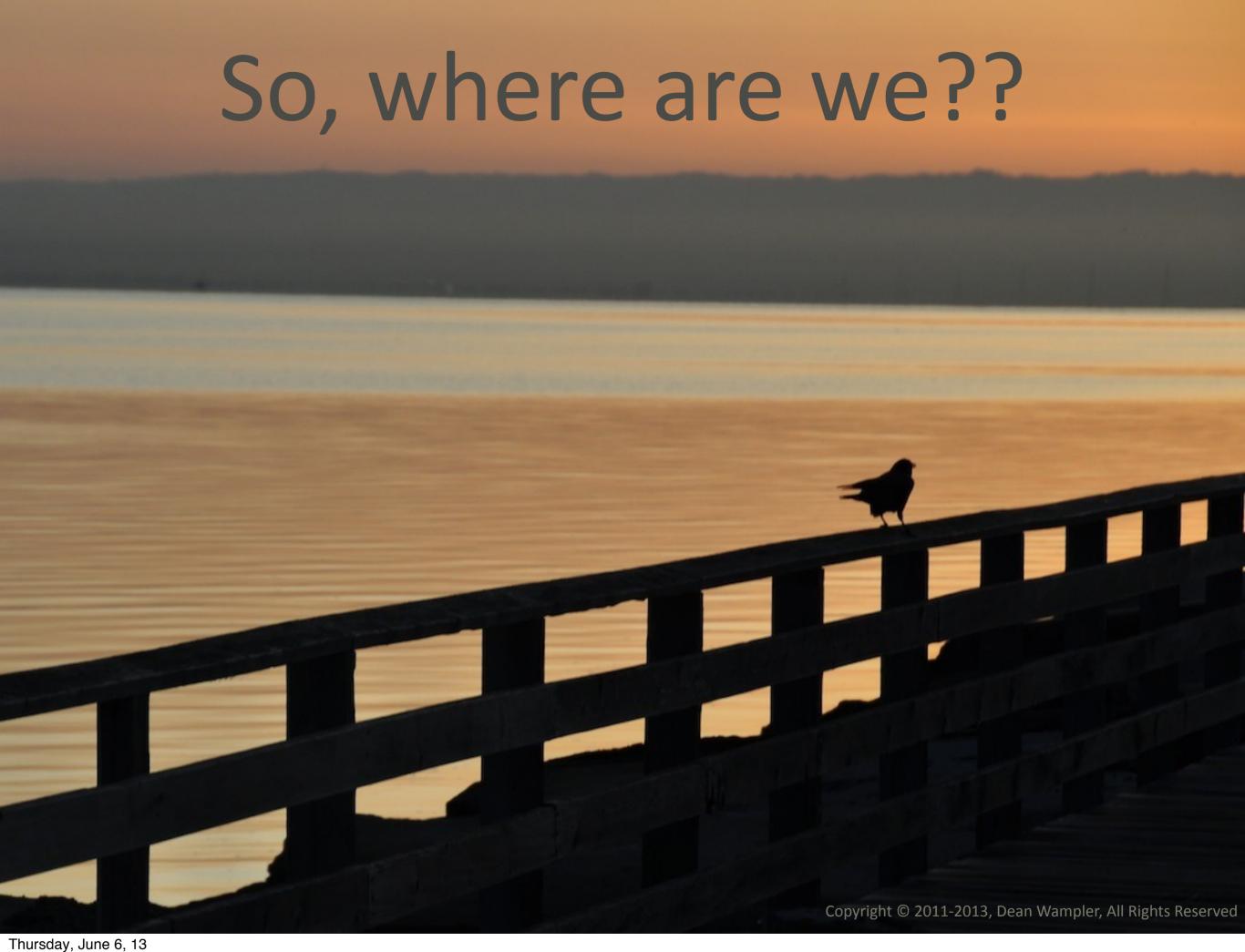
Now that we have cataloged some issues and solutions, let's recap and look forward. Photo: Grebe and distorted post reflection.

"Big Data"

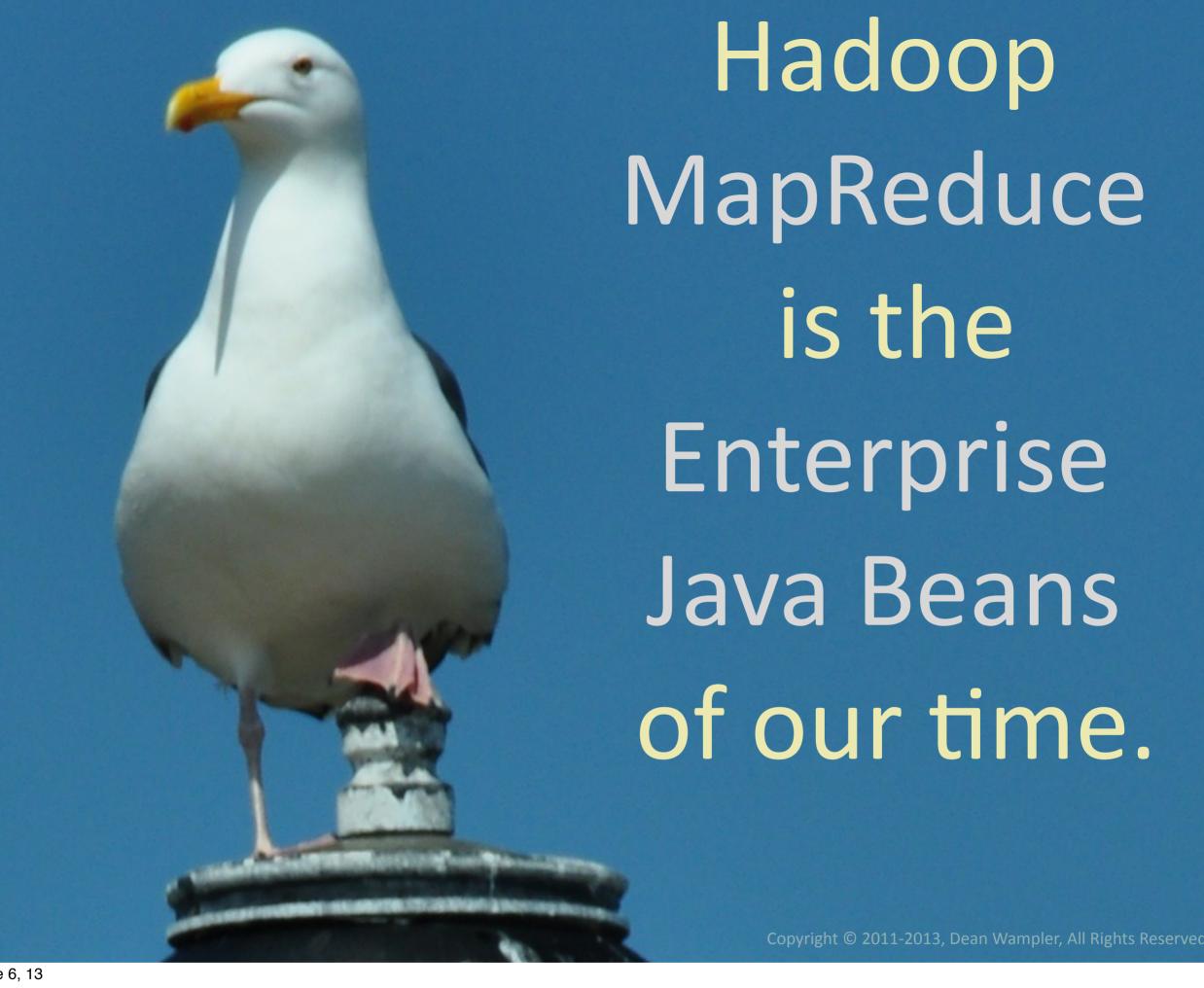
Nathan Marz's vision for data systems...



- Use Hadoop for batch-mode processing of very large data sets.
- Use Storm for event handling, e.g., increment updates.
- Use NoSQL for flexible, scalable storage.
- Stir...



Some thoughts about where the industry is and where it's headed.



I worked with EJBs a decade ago. The framework was completely invasive into your business logic. There were too many configuration options in XML files. The framework "paradigm" was a poor fit for most problems (like soft real time systems and most algorithms beyond Word Count). Internally, EJB implementations were inefficient and hard to optimize, because they relied on poorly considered object boundaries that muddled more natural boundaries. (I've argued in other presentations and my "FP for Java Devs" book that OOP is a poor modularity tool...)

The fact is, Hadoop reminds me of EJBs in almost every way. It's a 1st generation solution that mostly works okay and people do get work done with it, but just as the Spring Framework brought an essential rethinking to Enterprise Java, I think there is an essential rethink that needs to happen in Big Data, specifically around Hadoop. The functional programming community, is well positioned to create it...

At least MapReduce. HDFS has longer legs, although it has its own flaws, like a single-point of failure NameNode that was only recently fixed (with replicated NNs), but is still immature, and it has upper bounds on storage. The MapR File System is superior in all these ways, but proprietary. Anyway, HDFS will last longer, but eventually be replaced by "next generation" distributed file systems, but MapReduce is already in decline and being replaced by more performant engines such as Impala, Spark, and Storm (for different purposes...).

Does it feel "dated" like Hadoop?

The "good" NoSQL systems have all the right qualities, like minimal, focused abstractions.

Purpose-built Tools

Thursday, June 6, 13

I see that a trend where completely generic tooling is giving way to more "purpose-built" tooling...

ElasticSearch and Solr for Search.

New Hadoop file formats, optimize access (e.g., Parquet).

New compute engines in Hadoop that replace MapReduce.

95

Copyright © 2011-2013, Dean Wampler, All Rights Reserve

Thursday, June 6, 13

In the quest for ever better performance over massive datasets, the generic file formats in Hadoop and MapReduce are hitting a performance wall (although not everyone agrees). Parquet is column oriented & contains the data schema, like Thrift, Avro, and Protobuf. It will be exploited to optimize queries over massive data sets, much faster than the older file formats. Similarly, Impala is purpose built optimized query engine (that relies on Parquet).

Machine Learning and other advanced analytics are hard to write and perform poorly on Hadoop...

... but alternatives are emerging, including Spark, Storm, and proprietary solutions.

A Final Emerging
Trend...

Thursday, June 6, 13

Both are examples of technologies focused on particular problems. photo: Trump hotel and residences on the Chicago River.

Probabilistic Programming

- Languages for Probabilistic Graphical Models??
 - Bayesian Networks.
 - Markov Chains.

•

99

Copyright © 2011-2013, Dean Wampler, All Rights Reserve

Thursday, June 6, 13

http://en.wikipedia.org/wiki/Bayesian_network

http://en.wikipedia.org/wiki/Markov_chain

PGMs are essential tools for many machine learning and artificial intelligence systems. But they require some expertise to build, both mastery of the PGM concepts and implementing them in conventional programming languages There is growing interest in designing languages that encapsulate this complexity.

Photo: Gull on a pier near Fort Mason, SF

Consider Small-batch, Artisanal Data...

101

Copyright © 2011-2013, Dean Wampler, All Rights Reserve

Thursday, June 6, 13

If you have lots of data, it can be valuable, but you also have lots of work to do to manage and exploit it. Finding the right amount of "curated" data to use and a matching architecture still have valuable benefits, as always. Unfortunately, I see people jump on the Big Data bandwagon who think there's gold in their few GBs of data... That said, the "medium data" market is not well served at the moment. Hadoop can be overkill, yet traditional tools can be too expensive or not handle the load...

SQL Strikes Back!

Thursday, June 6, 13

NoSQL solves meets lots of requirements better than traditional RDBMSs, but people loves them some SQL!!

Don't overlook SQL

- It's entrenched.
- Organizations want a SQL solution if they can have it.

Hadoop owes a lot of its popularity to Hive!

104

Copyright © 2011-2013, Dean Wampler, All Rights Reserve

Thursday, June 6, 13

In large companies, the data analysts outnumber the developers by a large margin. Almost all of them know SQL (even if they happen to use SAS or similar tools more often...).

Some "NoSQL" databases have added query languages (e.g., Cassandra, MongoDB).

"NewSQL" databases are bringing NoSQL performance to the relational model.

Examples

- Google Spanner and F1.
- NuoDB.
- VoltDB.

107

Copyright © 2011-2013, Dean Wampler, All Rights Reserve

Thursday, June 6, 13

Spanner is the successor to BigTable. It is a globally-distributed database (consistency is maintained using the Paxos algo. and hardware synchronized clocks through GPS and atomic clocks!) Each table requires a primary key. F1 is an RDBMS built on top of it.

NuoDB is a cloud based RDBMS.

VoltDB is an example "in-memory" database, which are ideal for lots of small transactions that leverage indexing and rarely require full table scans.

What does this mean for NoSQL?

- People love SQL...
- but NoSQL meets other requirements.

All pictures Copyright © Dean Wampler, 2011-2013, All Rights Reserved. All other content is free to use, but attribution is requested.

Photo: Same sunrise, in Burlingame.