
Riak Use Cases:
Dissecting the Solutions to
Hard Problems
Andy Gross <@argv0>
Chief Architect, Social Media Liability
Basho Technologies

Monday, March 5, 12

Riak
Dynamo-inspired key value database

with full text search, mapreduce, secondary indices,
link traversal, commit hooks, HTTP and binary
interfaces, pluggable backends

Written in Erlang and C/C++

Open Source, Apache 2 licensed

Enterprise features (multi-datacenter replication) and
support available from Basho

Monday, March 5, 12

Choosing a NoSQL
Database

At small scale, everything works.

NoSQL DBs trade off traditional features to better
support new and emerging use cases

Knowledge of the underlying system is essential

A lot of NoSQL marketing is bullshit

Monday, March 5, 12

Tradeoffs

If you’re evaluating Mongo vs. Riak, or Couch vs.
Cassandra, you don’t understand your problem

By choosing Riak, you’ve already made tradeoffs:

Consistency for availability in failure scenarios

A rich data/query model for a simple, scalable one

A mature technology for a young one

Monday, March 5, 12

Distributed Systems:
Desirable Properties

Highly Available

Low Latency

Scalable

Fault Tolerant

Ops-Friendly

Predictable

Monday, March 5, 12

1000s of Deployments

Monday, March 5, 12

User/Metadata Store
Comcast

User profile storage for xfinityTV mobile
application

Storage of metadata on content providers, and
content licensing info

Strict latency requirements

Monday, March 5, 12

Notification Service
Yammer

Monday, March 5, 12

Session Store
Mochi Media

First Basho Customer (late 2009)

Every hit to a Mochi web property = 1 read,
maybe one write to Riak

Unavailability, high latency = lost ad revenue

Monday, March 5, 12

Document Store
Github Pages / Git.io

Riak as a web server for Github Pages

Webmachine is an awesome HTTP server!

Git.io URL shortener

Monday, March 5, 12

Walkie Talkie
Voxer

Monday, March 5, 12

Voxer - Initial Stats
11 Riak Nodes

~500GB dataset

~20k peak concurrent users

~4MM daily requests

Then something happened...

Monday, March 5, 12

Monday, March 5, 12

Voxer - Current Stats

> 100 nodes

~1TB data incoming / day

> 200k concurrent users

> 2 billion requests / day

Grew from 11 to 80 nodes Dec - Jan

Monday, March 5, 12

Monday, March 5, 12

Monday, March 5, 12

Distributed Systems:
Desirable Properties

High Availability

Low Latency

Horizontal Scalability

Fault Tolerance

Ops-Friendliness

Predictability

Monday, March 5, 12

High Availability

Failure to accept a read/write results in:

lost revenue

lost users

Availability and latency are intertwined

Monday, March 5, 12

Low Latency

Sometimes late answer is useless or wrong

Users perceive slow sites as unavailable

SLA violations

SOA approaches magnify SLA failures

Monday, March 5, 12

SOA

Who cares about latency?

Monday, March 5, 12

Who cares about latency?

Sometimes high latency looks like an outage to the end user.

Monday, March 5, 12

Fault Tolerance

Everything fails

Especially in the cloud

When a host/disk/network fails, what is the impact on

Availability

Latency

Operations staff

Monday, March 5, 12

Predictability

“It’s a piece of plumbing; it has never been
a root cause of any of our problems.”

Coda Hale, Yammer

Monday, March 5, 12

Cost

Monday, March 5, 12

Operational Costs
Sound familiar?

“we chose a bad shard key...”

“the master node went down”

“the failover script did not run as expected...”

“the root cause was traced to a configuration error...”

Staying up all night fighting your database does
not make you a hero.

Monday, March 5, 12

High Availability:
Erlang

Ericsson AXD-301: 99.9999999% uptime (31ms/year)

Shared-nothing, immutable, message-passing,
functional, concurrent

Distributed systems primitives in core language

OTP (Open Telecom Platform)

Monday, March 5, 12

High Availability:
Riak Core

Dynamo abstracted: distributed systems toolkit

Exhaustively tested

In production use at AOL, Yahoo, others

Insulates local storage and client API code from the
hard problems

Monday, March 5, 12

Low Latency:
Bitcask

After the append completes, an in-memory structure called a ”keydir” is updated. A keydir is simply a hash
table that maps every key in a Bitcask to a fixed-size structure giving the file, offset, and size of the most recently
written entry for that key.

When a write occurs, the keydir is atomically updated with the location of the newest data. The old data is
still present on disk, but any new reads will use the latest version available in the keydir. As we’ll see later, the
merge process will eventually remove the old value.

Reading a value is simple, and doesn’t ever require more than a single disk seek. We look up the key in our
keydir, and from there we read the data using the file id, position, and size that are returned from that lookup. In
many cases, the operating system’s filesystem read-ahead cache makes this a much faster operation than would
be otherwise expected.

3 2010/4/27

Tradeoff: Index must fit in memory

Low Latency: All reads = hash lookup + 1 seek

Monday, March 5, 12

Monday, March 5, 12

Monday, March 5, 12

Low Latency:
Erlang VM

Erlang VM was designed for soft-realtime apps

Preemptively scheduled lightweight threads

GC is per-thread, not stop-the-world

Sophisticated scheduler + message passing = effective
use of multicore machines.

Monday, March 5, 12

Questions?

Monday, March 5, 12

